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Introduction

High performance computing is an important aspect of modern scientific
simulations, and using computers to solve complex problems is central to
modern science. Numerical simulation has become the third pillar of sci-
ence, alongside theory and experimentation. Conventional high performance
computing relies on supercomputers and large clusters of central processing
units (cpu) working in parallel to solve a problem. With the advent of pow-
erful graphics processing units (gpu) for gaming and visualization purposes,
scientists have been looking to use these new machines for high performance
computing.

A gpu is a computer chip specially designed to display images on a com-
puter screen. Images are stored as vectors in computer memory. Manipulat-
ing them requires fast matrix and vector calculations. The gpu therefore is
optimized to perform these operations efficiently, and it is designed to do in-
tensive computation and massively parallel calculations. Its large number of
processing cores (240 for the Tesla C1060) can handle thousands of threads
concurrently. gpu threads are extremely lightweight and have little creation
overhead, making the gpu ideal for high performance scientific computing.
As with all parallel architectures, understanding the gpu structure is essen-
tial to use it efficiently. We present an introduction to gpu programming in
Chapter 1.

Using the gpu’s full potential requires an efficient parallel numerical
method. Well suited to the gpu architecture, the Discontinuous Galerkin
method (dgm) presented in Chapter 2 is a variation on the classical finite
element method (Warburton et al. , 2009).

The hyperbolic differential equations solved in this dissertation, a sim-
plified version of the 2D shallow water equations, are presented in Chapter 3.
A more physical version of the partial differential equations is solved using
the gpu to simulate a tsunami initiated in the Pacific Ocean off the coast
of Japan.

Chapter 4 describes three different implementations of the dgm: (1) a
cpu version which uses the blas library, (2) a gpu version with hand-coded
kernels, (3) a gpu version using a combination of hand-coded kernels and
the cublas library, a blas library for gpus.

The simplified shallow water equations are used in Chapter 5 as a bench-
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mark to compare the three different dgm implementations. We show consid-
erable speedup with the gpu implementations. For fifth order elements, the
gpu hand-coded implementation is about fifteen times faster than the blas
cpu version. With the help of cublas, the gpu implementation is about
fifty times faster than the cpu version. Some dgm steps, such as matrix-
matrix products and matrix-matrix additions, can take full advantage of the
parallel architecture and achieve considerably higher speedup than others.

In Chapter 6 we present future possible improvements and optimizations
for the gpu codes. These are expected to increase code performance by
taking advantage of different memory spaces and threading options.



Chapter 1

Graphics Processing Units

Graphics processing units are traditionally designed to manipulate graphics.
They are optimized to perform fast, computationally intensive, and highly
parallel vector operations. The gpu has a manycore multithreaded archi-
tecture, making it ideal for data parallel computation: the same program
is executed on many different datasets. Our gpu, the Tesla C1060, has a
theoretical bandwidth of 102.4 GB/s and a peak processing power of almost
1 TFLOPS in single precision calculation.

General-purpose computing on graphics processing units (gpgpu) used
to be tedious. Intimate knowledge of the gpu architecture and program-
ming language, both unsuitable for scientific computing, was assumed. Re-
cently, gpu programming has been made accessible and programmer friendly
through nvidia’s Compute Unified Device Architecture (cuda) program-
ming model which includes a simple extension to the C programming lan-
guage and the OpenCL framework.

Parallel systems continue to scale with Moore’s Law. The cuda pro-
gramming model is designed to be very scalable. Parallel paradigms such as
thread hierarchies, shared memory and barrier synchronizations are imple-
mented, ensuring that current cuda codes will scale well with future gpus.

In addition, optimized libraries such as blas, lapack and fft are being
ported to gpus. They are designed to take full advantage of its capabilities.

It is important to understand a gpu’s architecture to program the dgm
efficiently. We present an overview of the cuda programming model: the
device, the kernels, the thread hierarchies and the memory banks.

1.1 The Device

The gpu, which we call the device, is a set of multiprocessors and mem-
ory banks, schematically represented in Figure 1.1. The device contains N
multiprocessors, 30 for the Tesla C1060. A multiprocessor contains several
thread processors, eight for the Tesla C1060. Each processor has a Single
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Instruction Multiple Data (simd) architecture: the processor executes the
same instruction but on different datasets. All multiprocessors have access
to a read-write device memory, a read-only constant cache, and a read-only
texture cache. The host allocates device memory and sends and retrieves
data from the global, constant, and texture memory. The processors on a
multiprocessor have access to a shared memory which lies on the multipro-
cessor chip. Multiprocessors cannot access another multiprocessor’s shared
memory. Each processor has a set of read-write registers to store inter-
mediate results. The multiprocessor instruction unit is responsible for the
multiprocessor memory fetches and execution instructions.Chapter 3. Hardware Implementation 
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A set of SIMD multiprocessors with on-chip shared memory. 

Figure 3-1. Hardware Model 

3.2 Execution Model 
A grid of thread blocks is executed on the device by scheduling blocks for execution 
on the multiprocessors. Each multiprocessor processes batches of blocks one batch 
after the other. A block is processed by only one multiprocessor, so that the shared 
memory space resides in the on-chip shared memory leading to very fast memory 
accesses. 

How many blocks each multiprocessor can process in one batch depends on how 
many registers per thread and how much shared memory per block are required for 
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Figure 1.1: Hardware model of the device. The gpu, or device, has
N multiprocessors and M processors per multiprocessor. Registers, shared
memory, constant memory cache, and texture cache constitute the on-chip
memory. Device memory is accessible by all threads. Source: NVIDIA
Corporation (2008).
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1.2 Kernels

Kernels are user defined C functions executed on the device. Kernels are
called by the host (cpu) main thread. They are executed n times in parallel:
n different cuda threads are created, each handling one of these executions.

Kernels are launched asynchronously. Control is handed back to the
host thread immediately after kernel launch and the host code keeps ex-
ecuting. The Tesla C1060 does not support concurrent kernel execution.
This is supported by some devices with compute capability 2.0 and concur-
rent execution has to follow specific guidelines (section 3.2.7.3 of NVIDIA
Corporation (2010)).

A typical host-device interaction is illustrated in Figure 1.2. Host sequen-
tial code is executed. The host thread asynchronously launches a kernel and
keeps executing subsequent host code. Reaching another kernel launch, the
host thread waits for the previous kernel to finish before launching the next
one.

1.3 Thread Hierarchy

The gpu executes a kernel defined by a grid of blocks. These blocks are
composed of threads.

For convenience, threads can be grouped into blocks to form one, two or
three dimensional blocks enabling the user to tailor block sizes and dimen-
sions according to his application. Each thread in a block is given a unique
thread index which is accessed through the built-in variables threadIdx.
Blocks can be organized into a one or two dimensional grid to form a grid
of blocks (Figure 1.2). For our device, the maximum number of threads in
a block is 512 and the maximum number of blocks is 65535.

A block resides on one multiprocessor. To hide memory latencies, a
multiprocessor will handle several blocks concurrently. All threads on the
multiprocessor share the resources of that multiprocessor. The device sched-
ules the blocks so that each block has access to enough resources. However,
the total memory needed by all the threads in one single block cannot exceed
the multiprocessor resources.

Threads are excecuted concurrently. Threads within a block can com-
municate through the shared memory. Synchronization points can be used
to synchronize threads within a block. Synchronizing is a lightweight oper-
ation. On the contrary, blocks are required to be independently executable;
they have to be executable in any order. Blocks therefore can be scheduled
on any number of cores, making the program highly scalable. This implies
that threads from different blocks cannot communicate with each other and
cannot be synchronized.
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Serial code executes on the host while parallel code executes on the device. 

Figure 2-3. Heterogeneous Programming 
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Figure 1.2: Excecution flow of the main host thread and the device threads
organized in a grid of blocks. The host thread executes serial code and
launches the kernel. After a kernel launch the host code keeps executing
until reaching another kernel launch. It will wait for the previous kernel to
finish before launching the next kernel. A grid is a one or two dimensional
structure of thread blocks. Each block is a one, two or three dimensional
structure of individual threads. Source: NVIDIA Corporation (2010).
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1.4 GPU Memory

cuda threads have access to different levels of memory. We present a soft-
ware model of the device memory in Figure 1.3. This figure should be con-
trasted with the hardware model of the device (Figure 1.1). Chapter 2. Programming Model 
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Figure 1.3: Software memory model of the device. Thread blocks
have fast access to registers and shared memory. Threads in a block share
the same shared memory. They cannot communicate with threads in other
blocks. Each thread has its own registers. Off-chip memory such as global
memory offers much higher memory latency and is accessible by any thread.
Local memory also resides off-chip and suffers the same high latency as the
global memory. Source: NVIDIA Corporation (2008).

- Each thread uses the registers of the multiprocessors. Registers are
accessed per thread and have a very low latency of about 11 proces-
sor clock cycles. The number of registers per multiprocessor is fixed
(16384 32-bits registers for the Tesla C1060), limiting the number of
concurrent blocks on a multiprocessor.
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- All threads of a same block access a very low latency shared memory
(Figure 1.4). The amount of shared memory on a multiprocessor is
fixed, limiting the number of concurrent blocks on the multiprocessor.
This memory cannot be dynamically allocated by the threads.

- The constant memory and the texture memory are persistent on
the device and can be read by all threads. The host writes on those
device memories. The device threads access being read-only, these
memories are cached on the multiprocessors, reducing the latency. The
total amount of constant memory available for the Tesla C1060 is
about 65 kB. Texture memory is accessed in several different ways,
discussed in NVIDIA Corporation (2010).

- All threads access the device main memory, the global memory.
This memory resides off-chip and has a very high latency of about 300
cycles. The total amount of device memory for the Tesla C1060 is
about 4 GB. The local memory is a part of the device memory that
acts as a spillover for registers. Variable arrays declared by a thread
are automatically created in local memory unless otherwise specified
by a declaration modifier.

We can synthesize these different memories in Table 1.1.

Memory Penalty Scope Allocation Size

register 1× thread static 16384 reg. per MP
local 100× thread dynamic -
shared 1× block static 16384 B per MP
global 100× global dynamic 4 GB
constant 100× (cached) global (ro) n/a 65 kB

Table 1.1: Location, access and scope of the different memories. Access
penalty for global memory is much higher than register or shared memory
access. n/a = not applicable, ro = read-only, reg. = registers, MP =
multiprocessor.

In the following chapter we discuss the numerical method that we imple-
ment on the gpu. The Discontinuous Galerkin methode is a parallel method
that can take full advantage of the gpu architecture.
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Figure 2-2. Memory Hierarchy 

2.4 Heterogeneous Programming 

As illustrated by Figure 2-3, the CUDA programming model assumes that the 
CUDA threads execute on a physically separate device that operates as a coprocessor 
to the host running the C program. This is the case, for example, when the kernels 
execute on a GPU and the rest of the C program executes on a CPU. 
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Chapter 2

The Discontinuous Galerkin
Method

The Discontinuous Galerkin method (dgm) is a discontinuous approach to
the Finite Element method (fem). The fem, a numerical method used to
find an approximated solution to a partial differential equation, presents
many advantages. Interpolation theory ensures high order accuracy and
convergence. It divides the problem domain into small pieces, called ele-
ments, which form the mesh. The fem approximates the solution to the
partial differential equation using these elements. The elements are flexible
in size and shape and can capture complex boundaries and geometries. The
dgm uses a Finite Volume method (fvm) approach to the flux terms, mak-
ing it particularly suitable for hyperbolic partial differential equations and
unstructured grids.

As opposed to classical fem, adjacent elements in dgm do not share
degrees of freedom on boundary nodes. Therefore, discrete fields can be
discontinuous across the interfaces. These discontinuities are treated nu-
merically by approximated Riemann solvers for the hyperbolic part of the
equation.

There are two important advantages to the dgm approach. The dgm is
naturally stable for advective problems, and it is a highly parallel algorithm
because each element in the mesh is considered separate from the others.
The latter advantage makes the dgm ideal for gpu implementation.

Unfortunately diffusion processes are expensive to evaluate and the dgm
traditionally presents a higher computational cost than other methods. We
address the latter issue in this dissertation.

In this chapter, following Lambrechts (2011), we present the dgm for-
mulation and an efficient assembly of the dgm linear system. In Vos et al.
(2010), a similar approach is used to achieve high efficiency in the assembly
process through matrix-vector products. Lambrechts (2011) generalizes this
approach to an efficient assembly using large matrix-matrix products.
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2.1 DGM formulation

The problem of interest is to find the unknown u ∈ V (Ω) in a steady scalar
conservation law

0 = ∇ · f(u,∇u) + s(u,∇u) (2.1)

(2.2)

with Ω ⊂ RD, a function space with sufficient regularity V (Ω), the fluxes f
and the source term s. We discuss a scalar conservation law but extending
the discussion to systems is trivial.

The problem domain Ω is meshed into a set of NE non-overlapping ele-
ments, Ωe,

Ω =

NE⋃
e=1

Ωe

We assume in this paper that all the elements belong to the same class of
elements (triangular or quadrilateral or other types). This assumption is
not necessary but it simplifies notations. Our discussion remains valid for
mixed meshes. Each element is bounded by NT faces: for example, a 2D
triangular element has three interfaces.

The dgm consists of searching for the approximation uh of the unknown
u such that

uh ∈ V h
p = {v ∈ L2 : v|Ωe ∈ P p(Ω), e = 1, . . . , NE}

with P p(Ω) the space of polynomials of degree p on Ωe and L2 the space
containing functions whose square can be integrated.

For each element we expand u in the following manner

u(x)|Ωe ' uh(x)
∣∣∣
Ωe

=

Ns∑
i=1

UE(e,i)φE(e,i)(x), e = 1, . . . , NE (2.3)

with UE(e,i) the unknown nodal values on the element e, Ns the number of
nodes on the element (also the number of nodal functions φ) and E(e, i)
a bi-jective mapping from the physical element to the reference element,
providing a global index of the degree of freedom (E = 1, . . . , NENs, the
number of nodes in the mesh) (Figure 2.1).

Multiplying Equation (2.1) by the test functions φI and then integrating
over the domain leads to the standard dgm weak formulation

B(u, φI) =

∫
Ω

(∇ · f(u,∇u))φI dv +

∫
Ω
s(u,∇u)φI dv = 0, I = 1, . . . , NENs
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Fig. 1: Mappings between the actual element and the reference spaces used for
different integral computations: integration on elements (blue), integra-
tion involving all nodal values on face (red) and integration on face re-
quiring only nodal value associated with the nodes of the face (green).

Figure 2.1: Element mapping between the physical element and the reference
element, E(e, i), and interface mapping between the physical interface and
the reference interface, F (t, c, j). Integration is done in the reference space.
The mappings enable the transformation from the physical space to the
reference space: element integral, interface integral using all the nodal values
and interface integral using the boundary nodes. Source: Lambrechts (2011)

.
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which is rewritten by integrating the divergence term by parts

B(u, φI) =

∫
Ω

(−f(u,∇u)) · ∇φI dv +

∫
Γ
q(u,∇u)φI ds+

∫
Ω
s(u,∇u)φI dv = 0,

I = 1, . . . , NENs (2.4)

where q = f · n the normal flux is also called the numerical flux if Γ is an
element interface or the boundary flux if Γ belongs to the domain boundary,
∂Γ.

The following three terms need to be evaluated

Sei =

∫
Ωe

s(u,∇u)φE(e,i) dv (2.5)

Fei =

∫
Ωe

−f(u,∇u) · ∇φE(e,i) dv (2.6)

Qtcj =

∫
Γt

q(ud,∇ud)φF (t,c,j) ds (2.7)

S = [S]ei and F = [F ]ei are stored as matrices of size Ns ×NE . There are
therefore Ns equations to solve per element. Continuous and discontinuous
formulation of S and F are identical. The expression for Qtcj is valid for the
dgm formulation only. For each interface in the mesh the normal fluxes are
evaluated on each side of the edge (c = 0, 1). F (t, c, j) is a mapping from
the global edge nodes to the reference edge associated with node j of side
c of face t (Figure 2.1). We note the number of nodes on the interface Ms

and the number of interfaces in the mesh MT .

The objective is to evaluate S, F and Qtcj efficiently. We present an
outline of the assembly procedure, discussed in depth in (Lambrechts, 2011).

2.2 Efficient assembly

Integration of Equations. (2.5) and (2.6) over the element’s region Ωe is
expressed as the integration over the reference element’s region ω in the
reference space ξ. Coordinates in the physical space are xa, a = 1, . . . , D′

and coordinates in the reference space are ξα, α = 1, . . . , D (Figure 2.1).
Therefore, we can rewrite Equation (2.5)

Sei =

∫
Ωe

s(u,∇u)φE(e,i) dv =

∫
ω
s(u,∇u)φE(e,i)J dv
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where J the determinant of the Jacobian matrix of the transformation x(ξE)
from ω to Ωe. For a given element e, the Jacobian in 2D is

Jac =


∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η


and J =

∣∣∣∣∂x∂ξ ∂y∂η − ∂y

∂ξ

∂x

∂η

∣∣∣∣
The Jacobian matrix and its determinant are precalculated and stored for
all the elements.

We use a Gauss quadrature rule to approximate the integral by a sum
over NG points xe(Ξ

E
g ) on the element Ωe where ΞE

g are the coordinates of
the integration points in the reference space.

Sei '
NG∑
g

[
sφE(e,i)J

]
xeg

wg, ∀e, i

where wg is the weight of the g integration point and the functions enclosed
in square brackets are evaluated at xeg. A similar procedure for the flux
terms, Equation (2.6), defines

Fei =

∫
Ωe

−f(u,∇u) · ∇φE(e,i) dv

=

∫
Ωe

D∑
a

fa(u,∇u)
∂φE(e,i)

∂xa
dv

=

∫
ω

D∑
a

fa(u,∇u)

D′∑
α

∂φE(e,i)

∂ξEα

∂ξEα
∂xa

J dv′

where ∂ξEα
∂xa

are the entries of the inverse Jacobian matrix and are precalcu-
lated for all the elements.

Applying the Gauss quadrature rule leads to an explicit formulation for
F.

Fei '
NG∑
g

D∑
a

D′∑
α

[
fa
∂φE(e,i)

∂ξEα

∂ξEα
∂xa

J

]
wg ∀e, i

We will now show how to evaluate S and F efficiently in three steps:

1. Collocation: evaluating the unknowns at the integration points.

2. Evaluation: evaluating the physics at the integration points.

3. Redistribution: redistributing the flux and source terms to the element
nodes.

The equivalent expressions for Qtcj will be shown in Section 2.2.4.
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2.2.1 Collocation

The Gauss quadrature formula requires that the unknowns and their gra-
dients be evaluated at the element’s integration points. We assume the
elements belong to the same class, with the same nodal functions φ and
integration points. The element’s nodal functions and their gradients are[

φE(e,i)

]
xeg

= [φi]ΞEg ∀e, i, g[
∂φE(e,i)

∂ξEα

]
xeg

=

[
∂φi
∂ξEα

]
ΞEg

∀e, i, g

The collocation step is written in the following way

[u]xeg︸ ︷︷ ︸
A0[g][e]

=

Ns∑
i

[φi]ΞEg︸ ︷︷ ︸
W0[g][i]

UE(e,i)︸ ︷︷ ︸
X0[i][e]

∀e, g NENGNs (2.8)

[
∂u

∂ξEα

]
xeg︸ ︷︷ ︸

A1[gα][e]

=

Ns∑
i

[
∂φi
∂ξEα

]
ΞEg︸ ︷︷ ︸

W1[gα][i]

UE(e,i)︸ ︷︷ ︸
X0[i][e]

∀e, g NENGNsD
′ (2.9)

where the right column indicates the number of operations for the sum.
A1[gα][e] is a NGD

′ ×NE matrix with compressed row index [gD′ + α] and
column index [e]. Each integration point requires a sum of Ns shape func-
tions. The collocation step therefore scales as NGNs. Both these numbers
are proportional and scale like pD, where p is the interpolation polynomial
degree. It is essential to realize that these sums can be expressed as matrix-
matrix products

A0 = W0 ·X0

A1 = W1 ·X0

where W0 and W1 are constant and can be precalculated for all elements.
This matrix-matrix product can be efficiently done on a computer with the
Basic Linear Algebra Subprograms (blas level 3 library). The product can
easily be extended to the case of systems of partial differential equations
(Figure 2.2).

2.2.2 Evaluation

The evaluation step consists in calculating the physics of the problem.
The gradient of the unknowns in the physical space are evaluated with

the gradients in the reference space calculated in the collocation step, Equa-
tion (2.9), and the inverse Jacobian matrix[

∂u

∂xa

]
xeg

=

D′∑
α

[
∂u

∂ξEα

]
xeg

[
∂ξEα
∂xa

]
xeg

∀e, g, a NENGDD
′ (2.10)
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3 Explicit evaluation of B(u, φI) 5

NF

NE NF

N
S

NS

NF

NE NF

N
G

·=

Fig. 2: Matrix-matrix product to evaluate the fields at the integration points
(collocation)

Here, J is the determinant of the Jacobian of the transformation x(ξE) from ω

to Ωe. This integral on ω is approximated by a sum over NG integration points
xeg = xe(Ξ

E
g ) on the element Ωe, Ξ

E
g being the locations of the integration

points on the parametric space ξE of the reference element ω:

Sei ≃

NG
∑

g

[

sφE(e,i)J
]

xeg

wg ∀e, i (7)

where wg is the weight associated with the gth integration point, and the no-

tation
[

f
]

x

indicates that the expression between the square brackets, f , is

evaluated at the point x.
Consider now the contribution Fei that involves derivatives of test functions:

Fei =

∫

Ωe

D
∑

a

fa(u,∇u)
∂φE(e,i)

∂xa

dv =

∫

ω

D
∑

a

fa(u,∇u)

D′

∑

α

∂φE(e,i)

∂ξE

α

∂ξE

α

∂xa

J dv′.

Here, fka is the ath component of fk and
∂ξEα
∂xa

are the entries of the inverse
Jacobian matrix. This integral is then approximated by a sum over integration
points:

Fei ≃

NG
∑

g

D
∑

a

D′

∑

α

[

fa
∂φE(e,i)

∂ξE

α

∂ξE

α

∂xa

J
]

xeg

wg ∀e, i (8)

In the next sub-sections, the evaluation of the terms (7) and (8) have been
separated in three phases: collocation, evaluation and redistribution. The most
costly operations of the process will be expressed as large matrix-matrix product
that we can perform efficiently relying on existing BLAS implementation.

3.1 Collocation

In equation (8), the unknown fields and their gradients have to be evaluated at
integration points. Assume now that elements can be grouped in a way that

Figure 2.2: Evaluating the unknowns at the integration points with the
collocation matrix-matrix products, Equations (2.8) and (2.9), extended to
a system of partial differential equations containing NF unknown fields.
The three matrices are A0 or A1, W0 or W1 and X0. Source: Lambrechts
(2011).

Computing this expression is not as efficient as the collocation step (it cannot
be written as a matrix-matrix product) but it requires fewer operations. The
ratio of the number of operations for evaluating Equation (2.9) to evaluating
Equation (2.10) is Ns

D , which is typically much greater than one. Evaluating
Equation (2.9) is therefore more computationally expensive.

The physics of the problem is evaluated as

[s]xeg = s

(
[u]xeg ,

[
∂u

∂xa

]
xeg

,xeg

)
∀e, g O(NENG) (2.11)

[fa]xeg = fa

(
[u]xeg ,

[
∂u

∂xa

]
xeg

,xeg

)
∀e, g, a O(NENGD) (2.12)

The physics simulated determines the flux and source functions, which im-
ply that complicated physics will lead to a more expensive evaluation step.
However, the number of operations scale with NG and not NGNs. For high
order elements the cost of evaluating the physics is typically much smaller
than the cost of collocation.

2.2.3 Redistribution

The redistribution step takes the geometry into consideration. Local contri-
butions calculated at the evaluation step are first multiplied by the element’s
Jacobian matrix at the integration points, [J ]xeg .

[sJ ]xeg = [s]xeg [J ]xeg ∀e, g NENG (2.13)

[
f ′αJ

]
xeg

=

D∑
a

[
∂ξEα
∂xa

]
xeg

[fa]xeg [J ]xeg ∀e, g, α NENGD
′D (2.14)
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Because the number of operations goes as NG and not NGNs, these opera-
tions are relatively cheap.

The objective of the redistribution step is to redistribute the contribu-
tions evaluated at the integration points to the element nodes, using the
Gauss quadrature integration formula

Sei︸︷︷︸
A2[i][e]

'
NG∑
g

[φi]ΞEg wg︸ ︷︷ ︸
W2[i][g]

[sJ ]xeg︸ ︷︷ ︸
X2[g][e]

∀e, i NENsNG (2.15)

Fei︸︷︷︸
A3[i][e]

'
NG∑
g

D′∑
α

[
− ∂φi
∂ξEα

]
ΞEg

wg︸ ︷︷ ︸
W3[i][gα]

[
f ′αJ

]
xeg︸ ︷︷ ︸

X3[gα][e]

∀e, i NENsNGD
′ (2.16)

The number of operations scale like NGNs, making this step as expensive
as collocation. However, redistribution can be expressed as a matrix-matrix
operation as well and benefit from the same blas advantages.

S = W2 ·X2

F = W3 ·X3

We have divided the assembly of S and F in three steps. The first and
third step are expensive but can be expressed as matrix-matrix products
and computed efficiently. Evaluating the physics is less costly but cannot
be done efficiently.

2.2.4 Face Contributions

We now apply these steps to assemble the third matrix, Q, representing the
contributions from the fluxes through the interfaces.

The objective is to evaluate the integral

Qtcj =

∫
Γt

qc(ud,∇ud)ψF (t,c,j) ds

where ψj are the nodal functions of the reference interface and F (t, d, j)
maps the degree of freedom on a physical interface to a node on a reference
face defined in the parametric space ξ (Figure 2.1).

The collocation step is similar to the previous one.

[utd]xtg︸ ︷︷ ︸
A4[g][td]

=

Ms∑
j

[ψj ]ΞFg︸ ︷︷ ︸
W4[g][j]

UF (t,d,j)︸ ︷︷ ︸
X4[j][td]

∀t, d, g MTMG2MS (2.17)

The number of operations is defined by the product of the number of in-
terfaces, MT , the number of integration points on the interface, MG, the
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number of sides of each interface, indexed by d = (0, 1), and the number
of nodes on an interface, Ms. This operation is computed efficiently with a
matrix-matrix product

A4 = W4 ·X4

We will not be discussing diffusion processes in this work so we neglect the
gradients of the face. Their evaluation can be found in Lambrechts (2011).

Evaluating the physics cannot be done efficiently though the operations
scale with MG and not MGMs. It is therefore less costly than the collocation
step.

[qc]xtg = qc

(
[ud]xtg ,xtg

)
∀t, c, g O(MTMG2) (2.18)

Multiplying by the face Jacobians takes into account the geometry.

[qcJ ]xtg = [qc]xtg [J ]xtg ∀t, g, c O(MTMG2) (2.19)

Finally the redistribution step can be written as a matrix-matrix prod-
uct.

Qtcj︸︷︷︸
A5[j][tc]

'
MG∑
g

[ψj ]ΞFg
wg︸ ︷︷ ︸

W5[j][g]

[qcJ ]xtg︸ ︷︷ ︸
X5[g][tc]

∀t, c, j MTMsMG2 (2.20)

There are two implicit steps that have to be added to the assembling of
the face terms. Before the collocation step the interface unknowns UF (t,d,j),
stored in X4, have to be mapped from the element unknowns UE(e,i), stored
in X0. This mapping from the element to the interfaces is necessary for the
efficient calculation of the face contributions. Once Qtcj is assembled, these
contributions have to be mapped back to the element nodes to construct
Qei.

Putting the source, flux and face contributions together we rewrite the
weak formulation, Equation (2.4), in terms of the following matrices, each
of size Ns ×NE ,

B = S + F + Q = 0

2.2.5 Extension to a Non-Steady Conservation Law

We extend our results to a non-steady scalar conservation law:

∂u

∂t
= ∇ · f(u,∇u, t) + s(u,∇u, t) (2.21)

(2.22)
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We now study the left hand side as the evaluation of the right hand term
has already been done. Weak formulation of the time derivative is expressed∫

Ω

∂u

∂t
φI dv =

∂

∂t

∫
Ω
uφI dv ∀I = 1, . . . , NENs

because the nodal functions and element integrals are time independent.
Expanding u with Equation (2.3), we compute the mass matrix for each

element∫
Ωe

uφj dv '
∫

Ωe

Ns∑
i=1

UE(e,i)φE(e,i)φE(e,j) dv ∀e i, j = 1, . . . , Ns

=

Ns∑
i=1

∫
Ωe

φE(e,i)φE(e,j) dv UE(e,i)

= MeUE(e,i)

The entries of the mass matrix Me are

[Me]ij =

∫
Ωe

φE(e,i)φE(e,j) dv ∀e i, j = 1, . . . , Ns

The integral is approximated with a Gauss quadrature.

[Me]ij '
NG∑
g

[
φE(e,i)φE(e,j)J

]
xeg

wg ∀e i, j = 1, . . . , Ns

Each mass matrix is symmetric and constant for each element. They are
calculated once for all elements in the mesh.

The non-steady conservation law, Equation (2.21), is written for each
element

Me
∂

∂t
Ue(t) = Se(t) + Fe(t) + Qe(t) ∀e

⇔ ∂

∂t
Ue(t) = M−1

e (Se(t) + Fe(t) + Qe(t)) ∀e (2.23)

where Se(t) is the column of S associated with the element e. The inverse
mass matrices M−1

e are constant and can be precalculated for each element.
Time integration of the linear system can be done with a traditional time
integration scheme such as the Runge-Kutta fourth order method. Because
M−1

e is precalculated solving the linear system at each time integration step
is just a matrix-vector product. S, F and Q are evaluated in three steps:
collocation, evaluation and redistribution. The first and third steps can be
done efficiently. The second step is less efficient but less costly.

It is important to emphasize the parallel numerical method we have pre-
sented. The source and flux contributions are done by treating the elements
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independently of each other. The face contributions can be evaluated by also
treating each interface separately. Communication between the elements is
done by gathering these contributions together and solving the linear system.

In Chapter 4 we present our parallel implementation of the dgm.





Chapter 3

The Shallow Water
Equations

3.1 The Simplified Hyperbolic Partial Differential
Equations

As stated in the introduction, our objective is to solve hyperbolic partial
differential equations using the dgm on a gpu. We have chosen to solve
the simplified 2D shallow water equations. These equations are obtained
by depth-integrating the Navier-Stokes equations in the case where the hor-
izontal length scale is much greater than the vertical length scale. These
equations are used to model shallow fluid flows such as rivers and dam
breaks. With the addition of the appropriate physics such as the Corio-
lis force, dissipation and friction forces, the equations can be used to model
oceanic and atmospheric flows. In Section 3.2 we present the simplified equa-
tions governing a tsunami and the simulation of a tsunami off the coast of
Japan.

The linear equations solved with the dgm are
∂η

∂t
= −h0∇ · u

∂u

∂t
= −g0∇η

(3.1)

⇔ ∂

∂t

 ηux
uy

 = − ∂

∂x

h0ux
g0η
0

− ∂

∂y

h0uy
0
g0η

 (3.2)

where η is the relative (to a reference level) water elevation and u is the
depth-average mean velocity. The number of unknown fields, NF is equal to
three. The bathymetry is considered constant and equal to h0. Gravity is
constant and equal to g0. A simple 1D representation of the variables and
parameters is presented in Figure 3.1.
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Figure 3.1: 1D illustration of the relative water elevation, η, and a non-
constant bathymetry, h0(x).

Equation (3.1) defines a 2D wave equation. Using the non-dimensional
variables

η′ =
η

h0
and u′ =

√
g0

h0
u

Equation (3.1) is rewritten

h0
∂η′

∂t
= −h0

√
h0

g0
∇ · u′ (3.3)√

h0

g0

∂u′

∂t
= −g0h0∇η′ (3.4)

which is rewritten by deriving Equation (3.3) with respect to time and sub-
stituting with Equation (3.4)

∂2η′

∂t2
= −∇ · ∂

∂t

(√
h0

g0
u′

)
= −∇ ·

(
−g0h0∇η′

)
= g0h0∇2η′

= c2∇2η′ (3.5)

where the constant c =
√
g0h0 is the wave propagation speed.

We present here a simple 2D simulation. To create an initial elevated
bump of water, the initial conditions are

η(x, y, t = 0) =
1

2
exp(−20(x+ 0.4)2 − 20(y + 0.4)2)

ux(x, y, t = 0) = 0

uy(x, y, t = 0) = 0
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and are illustrated in Figure 3.2a.

To simulate impermeable boundaries so that the fluid is completely en-
closed, the boundary conditions are

∂η

∂x
(∂Γ, t) = 0 (3.6)

u · n(∂Γ, t) = 0 (3.7)

where n is the normal to the boundary. Physically the model simulates an
initial elevated bump of water in a enclosed square bassin (L = 2). Figure 3.2
shows the time evolution of this bump of water when h0 = 0.1 m and g0 =
10 m/s2. The initial height of the bump decreases as a function of time,
converting potential energy into kinetic energy (Figure 3.2d). The down
rushing water pushes the adjacent water up the sides of the containment
vessel (Figure 3.2j). This simulation was done using our gpu implementation
of the dgm method.

The benchmark test in this report uses h0 = 1 m, g0 = 1 m/s2 and the
initial conditions

η(x, y, t = 0) = exp(−2x2 − 2y2)

ux(x, y, t = 0) = 0

uy(x, y, t = 0) = 0

Using this problem, we will compare the different cpu and gpu implemen-
tations. The time evolution of this problem is presented in Appendix A.

To solve the shallow water equations using the dgm, it is useful to rewrite
Equation (3.2) in the form of the non-steady conservation law presented in
Equation (2.21). We identify the following terms

u =

 ηux
uy


s =

0
0
0


f =

−h0ux −h0uy
−g0η 0

0 −g0η


The flux term q is given by

q = f · n =

 −h0u
′
n

−g0η
′nx

−g0η
′ny
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(a) t = 0 s (b) t = 0.15 s (c) t = 0.30 s

(d) t = 0.45 s (e) t = 0.60 s (f) t = 0.75 s

(g) t = 0.90 s (h) t = 1.05 s (i) t = 1.20 s

(j) t = 1.35 s (k) t = 1.50 s (l) t = 1.65 s

Figure 3.2: Relative water elevation, η, as a function of time with h0 = 0.1 m
and g0 = 10 m/s2. This simulation was done using our gpu implementation
of the dgm method.
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with n = (nx, ny) is the interface normal and where the appropriate Riemann
solver defines

u′n = ūn +

√
g0

h0
[un]

η′ = η̄ +

√
h0

g0
[η]

with the operators

ā =
aL + aR

2
the mean value of a over the boundary

[a] =
aL − aR

2
the jump of a through the boundary

and the indexes L and R denote the value of a on the left and right of the
boundary, respectively. For a given face we can then write the normal fluxes
in the following way

qL =


−1

2h0

(
uLn + uRn +

√
g0
h0

(ηL − ηR)
)

−1
2g0nx

(
ηL + ηR +

√
h0
g0

(uLn − uRn)
)

−1
2g0ny

(
ηL + ηR +

√
h0
g0

(uLn − uRn)
)
 = −qR

These expressions are developed and explained fully in Bernard (2008).
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3.2 Tsunami Modeling

To simulate a tsunami initiated in the Pacific Ocean off the coast of Japan,
we include additional physics in the shallow water equations (Equation (3.2)).
The equations are solved on a stereographic projection of the Earth (Fig-
ure 3.3b) meaning that the problem is solved in 2D. The derivation of these
equations in the stereographic coordinates are presented in a working paper
by Slaoui (2011).

The equations describing the tsunami are the following

∂η

∂t
= −h0(x, y)

∂ux
∂x
− h0(x, y)

∂uy
∂y

∂ux
∂t

= −g0
∂η

∂x
+ fuy − cDux −

x

2R2
g0η

∂uy
∂t

= −g0
∂η

∂y
− fux − cDuy −

y

2R2
g0η

where h0(x, y) is the non-constant depth of the ocean (Figure 3.4), R is the
radius of the earth, x and y are the stereographic coordinates. We have
added the Coriolis force term, fuy and −fux, where

f = 2ω sin(θ)

with θ the latitude

The drag on the bottom of the ocean, −cDux and −cDuy, where

cD = g00.0252 (η(x, y) + h0(x, y))−
4
3

The stereographic terms, − x
2R2 g0η and − y

2R2 g0η, come from the change of
coordinates from a 3D sphere to a 2D projection of the Earth (Slaoui (2011)).
Details about this mathematical model are found in Lambrechts (2011) and
Bernard (2008).

The initial condition for the initial water elevation is presented in Fig-
ure 3.5. Mathematical models of earthquake induced water elevation defor-
mations are used to calculate this initial condition. The initial condition,
taken from the study of Yushiro Fujii and Kenji Satake1, is based on mod-
els for the 2011 Tohoku earthquake that occurred off the coast of Japan
on March 11, 2011. The time evolution of the modeled tsunami is pre-
sented in Figure 3.6. The wave is initiated by an earthquake off the coast
of Japan (Figure 3.6a). The waves propagate across the ocean and interact
with bathymetric features and continental coasts (Figure 3.6f).

Successful use of the dgm to solve hydrodynamics problems and to model
oceans flows has been shown in Dawson & Proft (2004), Kubatko et al.
(2006) and Remacle et al. (2006).

1http://iisee.kenken.go.jp/staff/fujii/OffTohokuPacific2011/tsunami.html

http://iisee.kenken.go.jp/staff/fujii/OffTohokuPacific2011/tsunami.html
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(a) Mesh of the Earth refined in the Pacific Ocean.

(b) Stereographic projection of the Earth.

Figure 3.3: Earth and a stereographic projection of the earth.
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Figure 3.4: Bathymetry of the ocean.

Figure 3.5: Initial condition for η.
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(a) t = 00 : 00 : 00 (b) t = 00 : 26 : 40 (c) t = 01 : 06 : 40

(d) t = 01 : 40 : 00 (e) t = 02 : 46 : 40 (f) t = 03 : 53 : 20

(g) t = 06 : 06 : 40 (h) t = 07 : 33 : 20 (i) t = 08 : 20 : 00

Figure 3.6: Sea surface elevation, η, as a function of time for the tsunami
simulation. This simulation is performed our gpu implementation of the
dgm method. The color map is cropped at 10 cm for a more representative
image.





Chapter 4

Implementing the
Discontinuous Galerkin
Method on the GPU

In this chapter we examine the general algorithms implemented to solve the
equations presented in Chapter 3. After introducing the code’s structure,
the different kernels and their parallel implementation are defined.

To evaluate gpu performance three different codes were written

- Pcpu: This program runs exclusively on the cpu. The code therefore
is executed sequentially. The blas library is used for the collocation,
redistribution and solving steps.

- Pgpu: This program runs on the gpu. All kernels are hand written.
These kernels have not been fully optimized and are the subject of
discussion in Chapter 6.

- Pgpublas: This program also runs on the gpu. The collocation and
redistribution steps use the cublas library, a blas library for cuda.

The performance of these different implementations are compared in Chap-
ter 5.

4.1 General Algorithms

Pgpu and Pgpublas can be divided into host driven initialization and device
driven resolutions at each time step.

1. Host driven initializations:

- Read the finite element mesh.

- Calculate the normal of each interface.
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- Evaluate the reference face and reference element nodal functions
and their derivatives at the integration points.

- Evaluate the integration weights associated with each face and
element integration point.

- Calculate (x, y, z) coordinates in the physical space of the inte-
gration points for each element and interface.

- Calculate the Jacobians, Jacobian matrices and their inverses for
each element and interface.

- Calculate the inverse mass matrix for each element.

- Initialize the unknowns and intermediate variables on the gpu.

- Send the precalculated data to the gpu

2. Solve the dgm with a Runge-Kutta fourth order integration scheme.

The Runge-Kutta fourth order time integration scheme is implemented
in the following way

for n < Nt do {Loop on time steps}
Us = U {Store the previous solution}
for k = 0→ 3 do
U∗ = Us + βk dU
dgm to evaluate dU = ∆t M−1

e (Se(U
∗, t) + Fe(U

∗, t) + Qe(U
∗, t))

U = U + γk dU {Update the solution}
end for

end for

The dgm is divided into eleven different kernels as defined in Section 4.2.
Each kernel defined represents a step in the dgm assembly and resolution
process that we presented in Chapter 2.

1. Mapping:

- mapToFace: Map element unknowns U to the face unknowns UF .

2. Collocation:

- collocationU: Evaluate U at the element integration points by
matrix-matrix multiplication, Equations (2.8) and (2.9).

- collocationUF: Evaluate UF at the face integration points by
matrix-matrix multiplication, Equation (2.17).

3. Evaluation:

- evaluate_sf: Evaluate the equations defining s and f , Equa-
tions (2.11) and (2.12).

- evaluate_q : Evaluate the equations defining q, Equation (2.18).
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4. Redistribution:

- jacobian_sf: Multiply s and f by the Jacobians and inverse
Jacobian matrices, Equations (2.13) and (2.14).

- gemm_sf: Calculate S and F by matrix-matrix multiplication,
Equations (2.15) and (2.16).

- jacobian_q: Multiply q by the face Jacobians, Equation (2.19).

- gemm_q: Calculate Qtcj by matrix-matrix multiplication, Equa-
tion (2.20).

5. Mapping:

- mapToElem: Map face contributions, Qtcj , back to the element
contributions, Q.

6. Solving:

- solve: Solve the linear system. Multiply each column of S, F,
Q by the element mass matrices.

4.2 Kernels and Parallel Implementation

In this section we describe the different kernels defined to solve our problem
and their respective parallel implementation. If kernels operate on elements,
thread blocks are defined per element: one thread block per element and one
thread per node (or integration point) per unknown field. This choice was
made in view of optimizing the kernels by placing all the matrices pertaining
to the element of the block in the shared memory (Chapter 6). For example,
for the gemm_sf kernel, there are NE thread blocks and NsNF threads per
block. Interfaces are threaded according the same principle: MT thread
blocks, each with MsNF threads.

Some code snippets are shown here but the majority of the kernel defi-
nitions are in Appendix B.

This is a first implementation and we will refer the reader to Chapter 6
for more information on optimizing these kernels.

Copying a vector to another (equal)

At each Runge-Kutta integration step the solution at the previous time step
is stored. Our implementation divides this operation into NE thread blocks
with Ns×NF threads per block. Each thread block performs the calculations
for the unknown fields at all nodes on the element. Pgpublas uses the cublas
function, cublasScopy(), to perform this operation. A sample kernel code
is shown in Section 4.2.

The C function calling the kernel is
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1 extern ”C”
2 void Lgpu equal ( i n t N s , i n t N E , i n t N F , s c a l a r * A, s c a l a r * B)

{
3

4 dim3 dimBlock ( N s , N F , 1 ) ; // Block dimensions
5 dim3 dimGrid (N E , 1 ) ; // Grid dimensions
6 gpu equal<<<dimGrid , dimBlock>>>(N s , N E , N F , A, B) ;
7 }

All the calling functions are similar and differ only by the block and grid
dimensions. They are omitted in the rest of this chapter.

Adding two vectors (add)

The Runge-Kutta time integration scheme requires the addition of two vec-
tors. Similarly to equal, we divided this operation in NE thread blocks and
Ns ×NF threads per block. Pgpublas uses the equivalent cublas function,
cublasSaxpy().

Mapping from the element to the face (mapToFace)

Mapping the element unknowns to the interface is done with MT thread
blocks and Ms ×NF threads per block.

Mapping from the face to the element (mapToElem)

Mapping the face contributions to the element contributions is done with
NE thread blocks and Ns ×NF threads per block.

Collocation step for the elements (collocationU)

For Pgpu, the collocation step for the element unknowns is done with NE

thread blocks and NG × NF threads per block. Pgpublas uses the cublas
function cublasSgemm(). The kernel code is presented in Listing 4.1.

Collocation step for the faces (collocationUF)

The collocation step for the face unknowns is done with MT thread blocks
andMG×NF threads per block. Pgpublas uses the cublas function cublasSgemm().

Evaluating s and f (evaluate sf)

Evaluating the source and flux terms is done with NE thread blocks and NG

threads per block.
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Listing 4.1: collocationU kernel code.

1 g l o b a l void gpu co l l o ca t i onU ( i n t D, i n t N G, i n t N s , i n t
N E , i n t N F , s c a l a r * Ug , s c a l a r * dUg , s c a l a r * phi , s c a l a r *
dphi , s c a l a r * U) {

2

3 i n t e = blockIdx . x ; // element index
4 i n t g = threadIdx . x ; // i n t e g r a t i o n node index
5 i n t f c= threadIdx . y ; // f i e l d index
6

7 s c a l a r s o l = 0 ;
8

9 // Matrix−matrix m u l t i p l i c a t i o n f o r the source c o n t r i b u t i o n s
10 f o r ( i n t i = 0 ; i < N s ; i++){
11 s o l += phi [ i *N G+g ] * U[ ( e*N F+f c ) *N s+i ] ;
12 }
13 Ug [ ( e*N F+f c ) *N G+g ] = s o l ;
14

15 // Matrix−matrix m u l t i p l i c a t i o n f o r the f l u x c o n t r i b u t i o n s
16 s o l = 0 . 0 ;
17 f o r ( i n t a = 0 ; a < D; a++){
18 f o r ( i n t i = 0 ; i < N s ; i++){
19 s o l += dphi [ ( i *N G+g ) *D+a ] * U[ ( e*N F+f c ) *N s+i ] ;
20 }
21 dUg [ ( ( e*N F+f c ) *N G+g ) *D+a ] = s o l ;
22 s o l = 0 . 0 ;
23 }
24 }

Evaluating q (evaluate q)

Evaluating the normal fluxes is done with MT thread blocks and MG threads
per block.

Multiplying s and f by the Jacobians (jacobian sf)

Multiplying the source and flux contributions is done with NE thread blocks
and NG ×NF threads per block.

Matrix-matrix product to calculate S and F (gemm sf)

The matrix-matrix multiplication to evaluate the source and flux contribu-
tions is done with NE thread blocks and Ns×NF threads per block. Pgpublas

uses the cublas function cublasSgemm().

Multiplying q by the face Jacobians (jacobian q)

Multiplying the face terms by the face Jacobians is done with MT thread
blocks and MG ×NF threads per block.
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Matrix-matrix product to calculate Qtcj (gemm q)

The matrix-matrix multiplication to evaluate the face contributions is done
with MT thread blocks and Ms ×NF threads per block. Pgpublas uses the
cublas function cublasSgemm().

Solving the linear system (solve)

Solving the linear system is done with NE thread blocks and Ns×NF threads
per block. It is not possible to call a cublas function from within a kernel.
Therefore the matrix vector product in this step does not take advantage of
a cublas implementation.

Extension to large problems

As mentioned in Chapter 1, a grid for the Tesla C1060 can contain a maxi-
mum of 65535 thread blocks. Because of our threading implementation for
most of the kernels, the maximum number of elements allowed in a mesh
is NE = 65535. For the tsunami simulations, we changed the kernel par-
allelism to accommodate more elements per thread block as illustrated in
the following code snippet. The variable blk is the number of elements per
thread block.

1 #d e f i n e blk 3
2

3 // Kernel d e f i n i t i o n s
4 g l o b a l void gpu equal ( i n t N s , i n t N E , i n t N F , s c a l a r * A,

s c a l a r * B) {
5

6 i n t e = blockIdx . x*blk+threadIdx . z ;
7 i f ( e < N E) {
8 i n t i = threadIdx . x ;
9 i n t f c = threadIdx . y ;

10

11 A[ ( e*N F+f c ) *N s+i ] = B[ ( e*N F+f c ) *N s+i ] ;
12 }
13 }
14 [ . . ]
15 // Host C f u n c t i o n s
16 extern ”C”
17 void Lgpu equal ( i n t N s , i n t N E , i n t N F , s c a l a r * A, s c a l a r * B)

{
18

19 i n t div = N E/ blk ;
20 i n t mod = 0 ;
21 i f (N E%blk != 0) mod = 1 ;
22 dim3 dimBlock ( N s , N F , blk ) ;
23 dim3 dimGrid ( div+mod, 1 ) ;
24 gpu equal<<<dimGrid , dimBlock>>>(N s , N E , N F , A, B) ;
25 }
26 [ . . . ]



Chapter 5

Comparing CPU and GPU
Implementations

The benchmark test for comparing Pcpu, Pgpu and Pgpublas is the simplified
shallow water equations, Equation (3.2), with h0 = 1 m and g0 = 1 m/s2 on a
square domain of size L = 2 m. The initial conditions are

η(x, y, t = 0) = exp(−2(x2 − y2))

ux(x, y, t = 0) = 0

uy(x, y, t = 0) = 0

The boundaries are considered impermeable. The time evolution of this
problem is presented in Appendix A. The problem was integrated over 1000
time steps with ∆t = 0.001 s.

We study the effect of two parameters: the number of elements in the
domain, NE , illustrated in Figure 5.1, and the interpolation order, p, illus-
trated in Figure 5.2. The kernels are divided so that the number of threads in
a thread block increases with p increasing kernel occupancy (Section 5.1.4).

We show increased performance for the gpu implementations as the num-
ber of elements and p increase. We use the following color legends in our
figures:

- cpu implementation (Pcpu) in red and data points with circles;

- gpu hand-coded implementation (Pgpu) in green and data points with
squares;

- gpu with hand-coded and cublas kernels (Pgpublas) in blue and data
points with triangles.

In this chapter we present the diagnostics used to compare the different
programs (Section 5.1), a preliminary analysis of overall gpu performance
(Section 5.2), and a performance analysis of each individual kernel (Sec-
tion 5.3).



40

1 2

34

1 25 6 7 2

3

8

9

10

34 1112134

1

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

3738

39

40 41

Figure 5.1: Examples of the meshed domain for different numbers of fourth order
elements (p = 4) and for NE = 4 (top-left), NE = 380 (top-right), NE = 1108
(bottom-left), NE = 5072 (bottom-right). The number of nodes per element, Ns

equals 15 for a fourth order element.
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Figure 5.2: Examples of the meshed domain for different element orders with
NE = 4 and for p = 1 (top-left), p = 3 (top-right), p = 6 (bottom-left), p = 10
(bottom-right). Because of our parallel model, the number of threads per block
increases as well, thereby increasing kernel occupancy.
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5.1 Diagnostics

Four important metrics are used to evaluate a program’s performance: ex-
ecution time, bandwidth, floating point operations per second and kernel
occupancy.

5.1.1 GPU Timers

gpu timers are used to time a kernel’s execution. Since kernel launches are
asynchronous it is necessary to use cudaThreadSynchronize() after the
kernel launch to ensure proper timing. cudaThreadSynchronize() acts as
a barrier and only proceeds with the following host code when the kernel is
done executing.

The gpu timer is independent of the computer’s operating system. It
measures time in milliseconds and has a half microsecond resolution.

5.1.2 Bandwidth

Bandwidth is one of the most important metrics used to evaluate kernel
performance and to optimize a kernel. Bandwidth measures the amount
of data transferred from global memory to the multiprocessor in a given
time interval, measured in GB/s. High bandwidth means that data is being
transferred and accessed efficiently.

Kernel bandwidth is particularly dependent on data storage location and
how data is accessed. Using the appropriate memory banks and grouping
memory fetches are key to increasing bandwidth.

Comparing the device’s theoretical bandwidth and the kernel’s effec-
tive bandwidth is indicative of kernel performance. The device’s theoretical
bandwidth is the peak theoretical data transferring rate. If the effective
bandwidth is much lower than the theoretical bandwidth, the kernel’s code
should be modified to increase the kernel’s effective bandwidth. This is ac-
complished in several different ways (Chapter 6). In practice, a gpu’s real
peak bandwidth is lower than the theoretical bandwidth. Running nvidia’s
bandWidthTest.cu kernel evaluates the gpu’s practical bandwidth. The
Tesla C1060’s theoretical bandwidth, Btheo, is 102.4 GB/s and its practical
bandwidth, Bpract, is 73.3 GB/s (Appendix D).

Kernel execution time and the amount of data read and written by the
kernel are used to calculate the effective bandwidth:

Beff =
Br+Bw
10243

T
[GB/s]

where Br is the number of bytes read by the algorithm (Br = 4 B for reading
float), Bw is the number of bytes written by the algorithm and T is the kernel
execution time in seconds.
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We time a kernel execution in the Runge-Kutta integration scheme and
average this time, t, by the number of kernel calls. Effective bandwidth for
some1 kernels presented in Section 4.2 are

- equal kernel:

Br = NsNENF sizeof(float)

Bw = NsNENF sizeof(float)

Beff =
Br +Bw

10243

Nt

t

- evaluate_sf kernel:

Br = (4NGNE + 2) sizeof(float)

Bw = (NGNENF +NGDNENF ) sizeof(float)

Beff =
Br +Bw

10243

4Nt

t

- evaluate_q kernel:

Br = (2MT +MGMTNF 2 + 2) sizeof(float)

Bw = (MGMTNF 2) sizeof(float)

Beff =
Br +Bw

10243

4Nt

t

- jacobian_sf kernel:

Br = (NGNENF +NGNE +DDNGNE +NGNENF ) sizeof(float)

Bw = (NGNENF +NGDNENF ) sizeof(float)

Beff =
Br +Bw

10243

4Nt

t

- jacobian_q kernel:

Br = (MGMT 2NF +MGMT ) sizeof(float)

Bw = (MGMTNF 2) sizeof(float)

Beff =
Br +Bw

10243

4Nt

t

1It is hard to define the bandwidth for matrix-matrix multiplications because it is
highly dependent on the gpu’s internal memory and caches.
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5.1.3 Floating Point Operations

The number of floating point operations per second (FLOPS) is an interest-
ing metric for some kernels. The number of floating point operations (flops )
for these kernels is

- collocationU kernel: This kernel performs two matrix-matrix multi-
plications.

F = 2NsNENFNG + 2NsNENFNGD (flops)

- collocationUF kernel: This kernel performs one matrix-matrix mul-
tiplication.

F = 2MsMTNF 2 (flops)

- evaluate_sf kernel: Two multiplications are done for four compo-
nents of f .

F = 2NGDNE(NF − 1) (flops)

- jacobian_sf kernel:

F = NGNENF + 3DDNGNENF (flops)

- gemm_sf kernel:

F = 2NGNENFNs + 2NGDNENFNs (flops)

- jacobian_q kernel:

F = MTMGNF 2 (flops)

- gemm_q kernel:

F = 4MGMTNF (flops)

- solve kernel:

F = 4NsNsNENF (flops)

The most expensive steps are the matrix-matrix multiplications which scale
as NGNs and solve kernels.
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5.1.4 Kernel occupancy

Kernel occupancy is an apriori diagnostic. Keeping the gpu’s multiproces-
sors as busy as possible is an important aspect of kernel performance. The
occupancy metric, a measure of the number of active warps2 on a multi-
processor, is a good indicator of multiprocessor resource use. cuda thread
instructions are executed sequentially. Paused or stalled warps, waiting for
a memory fetch or a barrier synchronization for example, cause execution
latencies. These latencies can be hidden by executing other warps on the
multiprocessor: the more active warps on a multiprocessor, the better these
latencies are hidden. Occupancy is defined

O =
active warps on the multiprocessor

potential active warps on the multiprocessor

As mentioned in Chapter 1, a multiprocessor has a set of registers available
for the cuda threads. This shared resource is allocated among the thread
blocks running on the multiprocessor. To maximize the number of thread
blocks executing simultaneously on a multiprocessor, thereby increasing oc-
cupancy, the cuda compiler minimizes register usage. Based on register and
shared memory requirements, calculating occupancy can help the user pick
thread block sizes.

While high occupancy is good, an increase in occupancy does not neces-
sarily mean a corresponding increase in performance. Once a certain occu-
pancy has been reached, the marginal benefit typically associated with an
increasing occupancy decreases. Low occupancy is always bad and interferes
with cuda’s ability to hide execution latencies.

nvidia provides an occupancy calculator in the form of an Excel spread-
sheet. The cuda compiler outputs the number of registers and shared mem-
ory used by a given kernel. The calculator uses these numbers to calculate
occupancy. In addition, the calculator provides graphs that show the effect
of changing the number of threads per block, the number of registers and
the amount of shared memory on occupancy (Figure 5.3). The occupancy
for the kernels defined in Section 4.2 are presented in Table 5.2. In our par-
ticular parallelization, thread block size increases with the element order p.
High order runs lead to a higher occupancy (Table 5.2).

Occupancy seems optimal for p = 7 and decreases a little for p = 10.
At p = 7, the number of threads per block is such that the multiprocessor’s
resources are fully used for some kernels.

Most of the kernel’s occupancies are block limited. They are limited by
the number of blocks of that size allowed on the multiprocessor. They are
not limited by the number of registers or by the amount of shared memory
available on the multiprocessor. Optimizing the kernels to take advantage
of this available memory is done in Chapter 6.

2A warp is a group of 32 threads managed by the multiprocessor.
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Figure 5.3: Thread block size influencing the occupancy of gemm sf. The
red triangle indicates resource usage for a fourth order run. The other data
points indicate resource usage for a range of block sizes. Increasing the
number of threads per block will increase occupancy.
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Kernel
Threads Registers Shared memory
per block (B)

equal NsNF 4 48
mapToFace MsNF 8 56
mapToElem NsNF 6 56
collocationU NGNF 12 80
collocationUF MGNF 12 56
evaluate_sf NG 10 64
evaluate_q MG 15 64
jacobian_sf NGNF 12 80
gemm_sf NsNF 12 88
jacobian_q MGNF 8 56
gemm_q MsNF 12 56
solve NsNF 14 76

Table 5.1: Thread block sizes, the number of registers and the amount of
shared memory used by the different kernels. The compiler returns the num-
ber of registers and the amount of shared memory at compilation time. The
kernels use relatively few resources. There are 16384 registers and 16384 B
of shared memory per multiprocessor. A more appropriate use of these
registers and the shared memory would lead to faster kernels (Chapter 6).

order 1 4 7 10

equal 25 50 100 88
mapToFace 25 25 25 50
mapToElem 25 50 100 88
collocationU 25 50 94 88
collocationUF 25 25 25 50
evaluate_sf 25 25 50 94
evaluate_q 25 25 25 25
jacobian_sf 25 50 94 88
gemm_sf 25 50 100 88
jacobian_q 25 25 25 50
gemm_q 25 25 25 50
solve 25 50 100 88

Table 5.2: Occupancy of the kernels for p = 1, 4, 7, 10. Occupancy increases
with the number of threads per block, which is proportional to p. Most
of the important kernels (e.g. collocationU and gemm sf) show increased
occupancy at p = 7.
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5.2 Preliminary Analysis

gpu timers are used to compare the different dgm implementations. The
time taken to transfer the solution from the device to the host and writing
the solution to an output file is excluded from the execution times reported
here.

However, overhead from kernel launch time is included. A kernel’s launch
time is of the order of 10−3 ms and it is therefore negligible when compared
to the overall kernel execution time (Figure 5.4b). The launch time is inde-
pendent of the kernel launched and the size of the problem for Pgpu. The
ratio of kernel overhead time to total kernel execution time decreases with
the size of the problem.

Ko =
kernel launch time

total kernel execution time

This is illustrated in Figure 5.4 and in Table C.1. For Pgpublas, the kernel
launch time varies with the element order. This is most likely because of
additional calculations and memory setup that the cublas library does to
optimize the matrix-matrix product.

(a) Launch time for collocationU as a func-
tion of element order for NE = 1108.

(b) Ratio of launch time to total execution
time for collocationU as a function of ele-
ment order for NE = 1108.

Figure 5.4: Launch times are small compared to overall kernel execution
time. The ratio of launch time to total execution time decreases with the
problem size. For Pgpu, the launch time does not depend on the problem
size. For Pgpublas, this overhead varies with the element order, most likely
because cublas optimizes block sizes and memory accesses for the matrix-
matrix product. This additional negligible overhead associated to setting
up the problem enables high speedup for the cublas library.

The times reported here are averaged over one thousand time steps.
Most of the kernels were launched four times per integration step because
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we used a Runge-Kutta fourth order algorithm. Each kernel was timed and
averaged over four thousand executions to reduce execution time variance.
These variances are small and average times reported can be trusted. We
measure the relative standard deviation, defined as

RSD =
standard deviation of the execution time

average execution time
(%)

and illustrated for Pgpu in Figure 5.5 and in Table C.2. The relative standard
deviation decreases with p and is small for the kernels of interest, e.g. the
matrix-matrix products (Figure 5.5).

Figure 5.5: Low execution time relative standard deviation is ensured by
averaging over one thousand Runge-Kutta integration steps. We show here
the relative standard deviation for collocationU as a function of the ele-
ment order for NE = 1108. For Pgpublas and Pgpu, the relative standard
deviation decreases with increasing element order.

A first comparison between Pcpu, Pgpu and Pgpublas illustrates the per-
formance gains of the gpu implementations. We compare the average ex-
ecution time of one Runge-Kutta iteration for Pcpu, Pgpu and Pgpublas in
Figures (5.6) and (5.7). The time for one cpu integration step increases lin-
early with the number of elements. The same observation can be made for
Pgpu and Pgpublas once the number of elements is larger than 100. gpu over-
head is then negligible compared to overall computation time. To measure
Pgpu and Pgpublas speedup we calculate the ratio

S =
cpu time

gpu time

and present it in Figures (5.6b) and (5.7b).
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For p = 4 and increasing numbers of elements, Pgpu is asymptotically
fifteen times faster than blas Pcpu (Figure 5.6). Pgpu and Pgpublas reach
their asymptotic speedup quickly, around NE = 100 (Figure 5.6a). In the
asymptotic regime the speedup does not increase significantly with the num-
ber of elements anymore. We use NE = 1108 to compare polynomial orders
to ensure that the asymptotic regime is reached. Pgpublas is asymptoti-
cally seventy times faster than Pcpu. The large speedup difference between
Pgpu and Pgpublas is due to the cublas library’s optimal use of the gpu’s
architecture to compute the matrix-matrix products.

For NE = 11083 and p = 5 or 6, Pgpu is ten times faster than Pcpu

whereas Pgpublas is almost fifty times faster (Figure 5.7). The cublas li-
brary is well tuned for matrix-matrix products. Pgpu’s speedup decreases
with the element order because the hand-coded matrix-matrix products are
not optimized. The reader can refer to Chapter 6 for code improvements
that might help increase gpu speedup. Increasing kernel occupancy by in-
creasing p (and therefore increasing the number of threads per block) does
not seem to help for all the kernels. Some kernels show increasing speedup
as p increases while others do not; this was discussed during our analysis of
the individual kernels (Section 5.3). Pgpublas’s speedup peaks around p = 5,
an element order frequently used in simulations. We show in Section 5.3 that
the solve kernel’s speedup decreases with element order. The solve opera-
tion dominates Pgpublas’s execution time at high orders, thereby decreasing
Pgpublas’s speedup at high p.

We have shown high speedup with our gpu implementations. Our hand-
coded version is ten to fifteen times faster than the cpu program which uses
the blas library. Using the cublas library increases this speedup to about
fifty.

Some gpu methods will show a net improvement over their cpu coun-
terparts because their algorithms are more appropriate for the gpu. It is
important to see how these methods scale with the problem size parameters,
NE and p, to understand the differences between Pcpu, Pgpu and Pgpublas.

3We are in the asymptotic regime where increasing the number of elements does not
increase speedup significantly.
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(a) Average time for one Runge-Kutta iteration. Pcpu time increases linearly with NE .
Pgpu and Pgpublas integration time is dominated by overhead below NE = 100. For higher
NE , Pgpu and Pgpublas time increases linearly with NE , though with different slopes. An
asymptotic regime is reached for NE larger than 100.

(b) Speedup, S = cpu time
gpu time

, for Pgpu and Pgpublas. Pgpu is asymp-
totically fifteen times faster than Pcpu. Pgpublas is asymptoti-
cally seventy times faster than Pcpu.

Figure 5.6: Average time and speedup for one Runge-Kutta iteration for
Pcpu, Pgpu and Pgpublas as a function of NE . The element order is fixed
(p = 4).
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(a) Average time for one Runge-Kutta iteration. Pcpu time
increases rapidly with the element order. This increase is much
larger than the one for Pgpu and Pgpublas.

(b) Speedup as a function of p. For p = 5 and p = 6, Pgpu

is about ten times faster than Pcpu whereas Pgpublas is forty-
eight times faster. Decrease in speedup at high order is due
to inefficient matrix-matrix products for Pgpu and inefficient
solving for Pgpublas.

Figure 5.7: Average time and speedup for one Runge-Kutta iteration for
Pcpu, Pgpu and Pgpublas as a function of element order, p. The number of
elements in the mesh is fixed (NE = 1108).
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5.3 Individual Kernel Analysis

It is important to analyze the different kernels to understand which kernels
are efficient and well implemented on the gpu (Figure 5.8). We compare the
fraction of time spent in the kernels for one Runge-Kutta integration. These
percentages do not add up to 100% because the add and equal operations
are not illustrated. Faded rectangles in the bar graphs are operations that do
not use a blas or cublas libraries. Dark color rectangles in the bar graphs
are operations performed with the blas or cublas libraries. Analysis for
fixed numbers of elements and increasing p is illustrated in Figure 5.8. The
corresponding figure for fixed p and an increasing number of elements is
Figure C.1.

For Pcpu in Figure 5.8a, it is clear that the expensive operations are the
matrix-matrix multiplications and Jacobian multiplications. The matrix-
matrix operations for collocation and gemm are done efficiently with the
blas library. For increasing p, the matrix-matrix products, while still ef-
ficient, dominate the total execution time. We stated in Chapter 2 that
evaluating the physics, while not efficient, is not as costly as the other oper-
ations. Evaluating the physics for Pcpu is only a small fraction of the total
time.

For Pgpu, the expensive operations are the matrix-matrix products per-
formed in collocationU and gemm_sf (Figure 5.8b). These products are
hand-coded and do not take full advantage of the gpu’s architecture. Us-
ing different memory types as well as changing the code’s structure could
presumably solve this problem (Chapter 6). The percentage of time spent
in collocationUF, jacobian_sf, jacobian_q, gemm_q and solve does not
increase significantly with p. They seem to scale well with an increasing
number of elements. The matrix-matrix products for the interface contri-
butions, collocationUF and gemm_q, are smaller than the products for the
element contributions because the number of nodes on an interface is much
lower than the number of nodes on an element. Multiplying by the Jaco-
bians is very efficient. As expected, the fraction of time spent evaluating
the physics of the problem is negligible. For p = 7, kernel occupancy of
the matrix-matrix multiplications is maximal (Table 5.2). The difference
between collocationU for p = 7 and the other orders is most likely due to
the high occupancy at p = 7 (100% occupancy). This kernel’s occupancy
for p = 10 is only 88%.

For Pgpublas, using the cublas library ensures efficient matrix-matrix
multiplications (Figure 5.8c). As opposed to Pgpu, these operations scale well
with the number of elements and do not dominate calculation time. There
seems to be an optimal size for the matrix-matrix product in gemm_sf before
p = 10 (Figure C.11b). At high order the solve operations dominate the
total time. The matrix-vector product is not implemented with the cublas
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(a) For Pcpu the blas implementations ensure efficient
matrix-matrix products.
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(b) For Pgpu, the matrix-matrix products dominate
the total execution time.
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(c) For Pgpublas, the matrix-matrix products are effi-
ciently calculated with cublas. The solve operations
dominate the total execution time for high p.

Figure 5.8: Comparing the fraction of time spent in each kernel for the
different implementations as a function of element order. The number of
elements is fixed: NE = 1108. Dark color rectangles are operations that use
the blas or cublas libraries.
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library4.
Multiplying by the Jacobians involves many small nested loops whose

size, while not known at computation time, can only be 1, 2, or 3, the spatial
dimension. In other codes it has been shown that unrolling these specific
loops significantly increases performances for the Jacobian multiplications
(e.g. jacobian_sf). However, loop unrolling was not performed in this
implementation.

Investigating the individual kernels and comparing the different imple-
mentations help understand where gpu implementations perform well. We
will discuss the equal kernel, the mappings, the physics evaluations, the
matrix-matrix products, and the linear system solve.

5.3.1 Equalizing Two Vectors

The equal operation, which copies the content of one vector into another,
is programmed in three different ways:

- Pcpu’s equal is a sequential loop iterating on each element of the
vectors one at a time;

- Pgpu is threaded so that each thread copies one element from one
vector to the other;

- Pgpublas uses the cublasScopy function.

A complete list of figures for this kernel can be found in Figure C.2.
As previously mentioned, execution time is dominated by kernel over-

head at a low number of elements. For a high number of elements and high
p the average execution time slopes are very different, indicating that the
average time for Pcpu’s equal will increase at a faster rate than for Pgpu

and Pgpublas (Figure C.2a).
This kernel achieves high speedup (Figure 5.9). Pgpu is asymptotically

twenty-five times faster than Pcpu. Pgpublas is thirty-five times faster. Even
for a simple copy operation the cublas library is faster than our gpu im-
plementation.

The effective bandwidth for this operation with Pgpublas approaches the
practical bandwidth (Figure 5.9b). This is not the case for our gpu imple-
mentation. The difference between these two implementations can be easily
explained by cublas’s optimized kernels.

5.3.2 Mappings

Mapping from the element to the interface and vice-versa is very lightweight
operation. The fraction of time spent doing one of these mappings is around

4A cublas function cannot be called from within a kernel. The only way to use the
cublas matrix-vector product is to call it sequentially from the host code: multiplying
with cublas each different inverse mass matrix with the element’s contributions one at a
time. This obviously would not take advantage of the gpu’s architecture.
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(a) Speedup for both Pgpu and Pgpublas. (b) Bandwidth comparison. Theoretical and
practical bandwidth. Pgpublas approaches the
practical bandwidth’s limit.

Figure 5.9: equal kernel performance as a function of NE with fixed element
order (p = 4) for Pgpu, Pgpublas.

0.5% for high order elements. These operations are well threaded. The
number of nodes that are mapped to and from the faces is much smaller than
the number of nodes in the mesh because the nodes lying inside the elements
are not mapped. The mappings achieve very high speedup (Figure 5.10).
There is a large increase in speedup for p = 7. We have mentioned previously
that for p = 7 occupancy seems optimal and this most likely explains the
increase in speedup. Optimal memory alignment could also explain this
increase.

While the same kernel was used for Pgpu and Pgpublas, Pgpublas speedup
is a little higher (Figure 5.10). We are not able to explain this slight differ-
ence as of the writing of this report.

Figure 5.10: mapToFace kernel performance as a function of element order.
This kernel, identical for Pgpu and Pgpublas achieves high speedup.
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5.3.3 Evaluating the Physics

Evaluating the physics is not a costly operation. For p = 4, only 1% of the
total time in a Runge-Kutta iteration step is spent evaluating the source
and flux contributions.

The gpu implementation5 achieves high speedup. It is almost sixty times
faster than Pcpu (Figure 5.11). The number of floating point operations
per second for the gpu implementation is much greater than that for the
cpu implementation (Figure 5.11b). However, this number is far from the
theoretical limit of the Tesla C1060 (almost 1 TFLOPS). This is most likely
because the kernel is bandwidth limited. Memory access is slowing down
the kernel’s performance.

(a) High speedup for both Pgpu and Pgpublas. (b) Floating point operations per second is
much greater for the gpu implementation.
However, this number is far from the theo-
retical limit of the Tesla C1060 (almost one
TFLOPS).

Figure 5.11: evaluate sf kernel performance as a function of NE with fixed
element order (p = 4) for Pcpu, Pgpu, Pgpublas.

5.3.4 Matrix-matrix Products

The greatest speedup factor comes from using the cublas library. The
matrix-matrix products are the costliest operations and dominate execution
time. The largest matrix-matrix products are calculated in the collocationU
and gemm_sf steps.

The number of floating point operations per second for Pgpu and Pgpublas

increases with the element order (Figure 5.12). However, this number in-
creases very differently for the two implementations. For Pgpu, this number
is close to 20 GFLOPS for high p and for Pgpublas close to 80 GFLOPS.
Pgpu does not optimize block sizes and memory access. All the data for

5Identical for Pgpu and Pgpublas
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Pgpu lies in the global memory which suffers from high latency. For p = 7,
we notice a jump in floating point operations per second for Pgpu, suggest-
ing that we have reached an optimal occupancy or that the kernel is doing
coalesced memory fetches (Chapter 6). Pgpublas achieves high floating point
operations per second because it optimizes block sizes and memory access.
However, it is still far from the theoretical peak performance of the Tesla
C1060.

For these large matrix-matrix products Pgpublas, designed to use the
gpu’s resources efficiently, is about thirty times faster than Pcpu (Fig-
ure 5.13). The blas library used by Pcpu accomplishes these operations
efficiently and rivals our hand-coded gpu implementation. We suggest im-
provements to Pgpu in Chapter 6 to increase its performance.

The matrix-matrix products for the face terms of a 2D problem do not
achieve very high speedup. While Pgpublas is eight to ten times faster than
Pcpu, these products are not large enough to show remarkable performance
increases on the gpu. However, generalizing this method to 3D problems will
ensure that the face contribution matrices are much larger. We therefore
expect significant speedup for 3D problems. In addition, we are solving
an explicit formulation of the dgm. An implicit formulation would further
increase the mass matrices and the number of operations in the solve step.

Figure 5.12: collocationU kernel floating point operations per second as
a function of p with fixed number of elements (NE = 1108) for Pcpu, Pgpu,
Pgpublas. Pgpu suffers from high memory latency. Pgpublas offers a very high
number of floating point operations per second.

5.3.5 Solving the Linear System

Solving the linear system is done by multiplying the element’s inverse mass
matrix with the element’s contributions. We consider the general case of
a mesh composed of high order curved elements where each element has a
different inverse mass matrix. Consequently, this operation cannot be ex-
pressed as a single matrix-matrix product. Pcpu loops over each element
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(a) collocationU kernel. (b) gemm sf kernel.

Figure 5.13: Speedup for Pgpu and Pgpublas as a function of element order
(NE = 1108). Using the cublas library makes Pgpublas about thirty times
faster than Pcpu. Pgpu is limited by memory access and is not much faster
than Pcpu, which uses the blas library.

individually and uses the blas library to perform this matrix-vector opera-
tion. The gpu implementation does not use the cublas library because a
cublas function cannot be called from within a kernel.

Our gpu implementation is asymptotically thirty times faster than Pcpu

for a high number of elements (Figure 5.14a). Because of our implementa-
tion, increasing the number of elements increases the number of blocks but
does not increase the work load of each block.

Speedup decreases as a function of the element order (Figure 5.14b). The
number of threads per block increases such that this kernel slows down with
the element order. Each block is accessing the element’s inverse mass matrix
multiple times, once for each unknown field instead of storing it in the shared
memory. For lack of time we were not able to implement this improvement.
The size of the matrix-vector product also increases with element order.

Solving the linear system dominates execution time for Pgpublas (Fig-
ure 5.8c). This step accounts for twenty percent of the Pgpublas’s execution
time at high element order, decreasing Pgpublas’s speedup (Figure 5.7b). Im-
proving this kernel is a high priority improvement which we discuss in Chap-
ter 6.

5.4 Conclusion

In this chapter we have shown high speedup with the gpu implementation:
approximately fifty times faster for Pgpublas and around ten to fifteen times
faster for Pgpu at p = 5.

Speedup tends to saturate at a high number of elements. The number
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(a) Speedup as a function of number of ele-
ments (p = 4).

(b) Speedup as a function of element order
(NE = 1108).

Figure 5.14: Speedup for Pgpu and Pgpublas. Decreasing speedup for high
order elements is due to inefficiently implemented matrix-vector products.
The appropriate use of shared memory should increase the speedup for high
p.

of elements defines the number of blocks and the grid size. The amount of
operations done per block does not vary with the number of elements.

Most kernels show increased speedup as p increases. Increasing the el-
ement order increases the number of threads per block and the amount of
work done per block. As mentioned in Chapter 4, increased occupancy gen-
erally implies an increase in performance. Another important factor that
could explain this increased performance is that global memory fetches are
better coalesced for high orders. At p = 7, hand-coded kernel occupancy is
optimal for many kernels and we have shown an increase in speedup for this
order.

Evaluating the physics, multiplying by the Jacobians, performing the
mappings and copying two vectors are operations that are well suited to the
gpu.

Pgpu is limited by slow memory access and therefore does not achieve
great speedup for the matrix-matrix products. The blas library rivals our
implementation for the smaller matrix-matrix products. Pgpublas achieves
very high speedup for the matrix-matrix product because it is designed to
optimize this type of operation.

Solving the linear system is the least efficient kernel because its perfor-
mance decreases as the element order increases. The matrix-vector product
is inefficiently implemented. This could be averted with a more appropriate
use of the gpu’s shared memory.

We did not achieve the theoretical bandwidth and peak performance
limits of the gpu, leading us to believe that these kernels can be optimized.
Improving the gpu kernels is the subject of the next chapter.





Chapter 6

GPU Code Improvements

Despite notable performance improvements, Pgpu presents only a first, rel-
atively naive implementation of the dgm. In this chapter we present some
general guidelines to optimizing code and suggest several high priority im-
provements to our current implementation.

These improvements were not implemented. Though we assume they will
speed up the code we do not have results to prove this. These improvements
should be quantified using the appropriate timers, the kernel bandwidth,
floating point operations per second and occupancy.

The cublas library has a remarkable performance for the matrix-matrix
multiplication operations (gemm_sf, collocationU). Optimizing a hand-
made code for these operations might therefore be a waste of time.

6.1 High Priority Improvement Guidelines

It is essential to use the memory as close to the multiprocessors as possible.
The objective is to minimize global memory fetches. The use of shared mem-
ory is one of the most important performance enhancers. As mentioned in
Chapter 1 this memory resides on the multiprocessor and it is accessed about
a hundred times faster than global memory. Minimizing global memory use
and maximizing shared memory use is therefore extremely important.

It is important to keep in mind that shared memory is divided into
banks. Multiple threads simultaneously accessing to the same bank can
lead to bank conflicts. Conflicting accesses are serialized and decrease kernel
performance.

Global memory fetches are done by half-warps of threads (16 threads
on the Tesla C1060). A coalesced fetch means that all threads in a half-
warp access the global memory of the device in one transaction. Coalescing
global memory fetches can increase kernel performance by several orders
of magnitude. A coalesced fetch can be ensured if certain guidelines are
followed (NVIDIA Corporation, 2009).
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Using cached constant memory is another performance enhancer. Con-
stant memory on the Tesla C1060 is relatively small, about 65 kB.

After optimizing memory data storage locations and data fetches execu-
tion configuration should be optimized. The objective is to keep the mul-
tiprocessors as busy as possible by increasing occupancy. Executing other
warps on the multiprocessor to hide latencies caused by a paused or stalled
warp increases code performance.

We should note that it is essential to minimize data transfers from the
host to the device. These transfers are slow and costly but in our case it is
not really a problem since all the calculations are done on the device. Host
to device transfer is 4.7 GB/s on the Tesla C1060 compared to a device to
device transfer of 73.3 GB/s (theoretically 102.4 GB/s). Most often it is a good
idea to keep calculations on the device to avoid transferring data back to the
host even if these calculations do not show remarkable improvement. Pgpu

therefore copies all necessary data from the host to the device once. The
only data transfers from the device to the host occur when the device sends
the solution back to the host after a defined number of integration steps.
These transfers are excluded from our timing procedures.

6.2 Suggested Improvements to Pgpu

Depending on availability, constant memory should be considered for storing
the constant matrices such as the Jacobians, the inverse mass matrices, the
nodal functions, and the mappings.

In the kernels multiplying by the Jacobians, jacobian_sf and jacobian_q,
the Jacobians should be placed in the shared memory of the block. Each
thread block corresponds to one element and therefore the Jacobians and
inverse Jacobians are the same for each block.

Loop unrolling should be done whenever possible. Iterations on the space
dimensions or sides of an interface should be explicit and hard-coded.

Optimizing the solve kernel should be a priority. It greatly reduces
Pgpublas’s performance and its speedup decreases as a function of the ele-
ment order. Placing the element’s inverse mass matrix and the associated
column of the matrices that store the physical law evaluated at the integra-
tion points, S, F, and Q, in the block’s shared memory will increase the
matrix-vector product performance used to solve the linear system. A more
efficient algorithm for the matrix-vector product could be implemented.

Block multiplying two matrices and using the shared memory for this
product greatly increases performance. However, the cublas library might
still be faster than block multiplying matrices by hand.

We have shown that most of our kernels have very low occupancy for
low p (Table 5.2). Grouping multiple elements on a same block would in-
crease occupancy for lower polynomial orders. This does not necessarily
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mean increased kernel performance. Additional speedup could be achieved
by finding the appropriate number of elements per block, either empirically
or with the occupancy calculator. For example, for p = 4, the gemm_sf ker-
nel’s occupancy can be increased from 50% to 75% by placing two elements
per block instead of one. Grouping three elements on one block increases
the occupancy to 94%. This optimization might not be necessary for a 3D
problem. We expect a much higher occupancy for a 3D problem since inter-
faces and volumes will contain many more nodes, increasing the number of
threads per block.

Measuring the effects of these improvements on code performance would
be very interesting. This list of improvements is non-exhaustive. Other
improvements could of course be implemented though global memory coa-
lescing1 and shared memory use should be given high priority.

6.3 Alternative Discontinuous Galerkin Implemen-
tation

We propose a different kind of kernel structure which may increase code
performance. The objective is to increase register and shared memory use
because access to these memories is extremely fast (Section 1.4). Instead
of dividing the dgm into small, separate kernels, these kernels would be
grouped. Each thread block would use shared memory and registers as
much as possible and eliminate transfers from global memory.

A scatter operation in the kernels would allow all thread blocks to
fetch the necessary data from the global memory and store them locally: the
element’s relevant Jacobians, inverse mass matrices, and nodal functions.

Five kernels would be necessary:

1. mapToFace to map from the element to the interface unknowns. This
is the same kernel as defined in Section 4.2.

2. calculate_sf to calculate the source and flux contributions S and F.
This kernel would be threaded in NE thread blocks, each containing
NF threads.

3. calculate_q to calculate the face contributions Qtcj . This kernel
would be threaded in MT thread blocks, each containing NF threads.

4. mapToElem to map from the interface to the element contributions.
This is the same kernel as defined in Section 4.2.

5. solve to solve the linear system, also defined previously in Section 4.2.

1The correct memory alignments could ensure coalesced fetches, discussed in depth for
the dgm in (Warburton et al. , 2009).
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calculate_sf’s algorithm would be

1 g l o b a l void gpu SFca l cu la t i on ( args ) {
2 i n t e = blockIdx . x ;
3 i n t f c= threadIdx . x ;
4 // Fetch the data r e l e v a n t to the element and s t o r e them in

share memory ( jacob ians , i n v e r s e mass matrix , nodal
funct i ons , . . . )

5 // Co l l o ca t i on ( matrix−vec to r product )
6 // Evaluat ion
7 // R e d i s t r i b u t i o n ( matrix−vec to r product )
8 // Send S e and F e to the g l o b a l memory
9 }

Despite the many advantages of this program structure (use of fast
shared memory and registers) there are a few disadvantages.

The number of registers and the amount of shared memory on a multi-
processor is limited. The suggested kernels would use many more registers
and more shared memory than the small kernels currently implemented.
Limited by resource availability, this could reduce the number of thread
blocks concurrently executing on a multiprocessor and severely reduce oc-
cupancy. Thread blocks using too many registers could be forced to push
data onto local memory which is as slow as global memory.

Another disadvantage is that these kernels are less parallel. A block
of threads representing one element would only contain NF threads. Each
thread would do the calculations for all the nodes in each unknown field of
the element. Sequential loops in each thread would be necessary to treat all
the nodes of the element and all the integration points of the element. The
matrix-vector product in the collocation and redistribution steps would be
done sequentially.

Avoiding this last disadvantage is possible. Each thread in a block
could do the calculations for each node of the element or each integration
point. There would be therefore max(Ns, NG) × NF threads per block for
calculate_sf. Shared memory use and index calculation is more compli-
cated.

This implementation illustrates the compromise between maximizing fast
memory usage and minimizing register use to increase occupancy and max-
imizing the code’s parallel structure.



Conclusions

In this dissertation we implemented a parallel numerical method, the Discon-
tinuous Galerkin method, to solve partial differential equations on a graphics
processing unit.

gpus have a unique architecture composed of many multiprocessors
which can handle thousands of lightweight threads concurrently, and many
different types of memory. Understanding the architecture of the gpu is es-
sential to an intelligent implementation of the numerical method that takes
full advantage of the gpu’s resources.

The dgm is a numerical method that considers the elements individually.
It is therefore intrinsically parallel, making it ideal for the gpu. The dgm
is divided into three steps: collocation, evaluation and redistribution. It is
shown in Lambrechts (2011) that the first and third steps can be rewritten
as expensive matrix-matrix products that can be efficiently calculated with
a blas routine. Evaluating the physics of the problem, the second dgm step,
does not require as many operations as the collocation and redistribution
steps but it cannot be efficiently calculated.

We have shown considerable speedup for the dgm method with the gpu.
The gpu hand-coded implementation is overall ten to fifteen times faster
than a cpu version using the blas library. With the use of cublas, the
gpu’s optimized blas library, the gpu implementation is about fifty times
faster than the cpu version. The hand-coded kernels do not use the gpu’s
shared memory. The matrix-matrix products therefore dominate execution
time at high orders whereas they are efficiently calculated with the cublas
library. Increasing occupancy by increasing the number of threads per block
seems to have a positive effect on gpu performance. A poor implementation
of the matrix-vector product in the linear system solve greatly slows down
the gpu implementation which uses cublas.

Taking better advantage of the gpu’s architecture will increase the gpu’s
performance. Using fast access shared memory and registers and block mul-
tiplying matrices will significantly speed up the kernels. Implementing global
memory coalesced fetches and optimizing occupancy by placing several ele-
ments per thread block should be explored.

Today’s scientists are using parallel computer clusters and parallel algo-
rithms to solve increasingly complex problems. High-performance scientific
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computation has been looking to use the modern gpu, a parallel cluster on
its own and traditionally tailored to gaming and visualization, for scientific
purposes. In this paper we have shown how an unoptimized implementation
of the dgm can achieve considerable speedup.
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Dawson, Clint, & Proft, Jennifer. 2004. Coupled discontinuous and con-
tinuous Galerkin finite element methods for the depth-integrated shallow
water equations. Computer Methods in Applied Mechanics and Engineer-
ing, 193(3-5), 289 – 318.

Kubatko, Ethan J., Westerink, Joannes J., & Dawson, Clint. 2006. hp Dis-
continuous Galerkin methods for advection dominated problems in shal-
low water flow. Computer Methods in Applied Mechanics and Engineering,
196(1-3), 437 – 451.

Lambrechts, Jonathan. 2011. Finite Element Methods for Coastal Flows:
Application to the Great Barrier Reef. Ph.D. thesis, Université catholique
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Appendix A

Solution to the Benchmark
Problem

The solution to the benchmark test as a function of time is illustrated in
Figure (A.1). The initial conditions are

η(x, y, t = 0) = exp(−2x2 − 2y2)

ux(x, y, t = 0) = 0

uy(x, y, t = 0) = 0

The boundaries are impermeable and h0 = 1 m and g0 = 1 m/s2.
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(a) t = 0s (b) t = 10s (c) t = 20s

(d) t = 30s (e) t = 40s (f) t = 50s

(g) t = 60s (h) t = 70s (i) t = 80s

(j) t = 90s (k) t = 100s

Figure A.1: Relative water elevation, η as a function of time with h0 = 1 m
and g0 = 1 m/s2.



Appendix B

Kernel Codes

Copying a vector to another (equal)

At each Runge-Kutta integration step the solution at the previous time step
is stored. Our implementation divides this operation into NE thread blocks
with Ns×NF threads per block. Each thread block performs the calculations
for the unknown fields at all nodes on the element. Pgpublas uses the cublas
function, cublasScopy(), to perform this operation.

1 g l o b a l void gpu equal ( i n t N s , i n t N E , i n t N F , s c a l a r * A,
s c a l a r * B) {

2

3 i n t e = blockIdx . x ;
4 i n t i = threadIdx . x ;
5 i n t f c= threadIdx . y ;
6

7 A[ ( e*N F+f c ) *N s+i ] = B[ ( e*N F+f c ) *N s+i ] ;
8 }

The C function calling the kernel is

1 extern ”C”
2 void Lgpu equal ( i n t N s , i n t N E , i n t N F , s c a l a r * A, s c a l a r * B)

{
3

4 dim3 dimBlock ( N s , N F , 1 ) ;
5 dim3 dimGrid (N E , 1 ) ;
6 gpu equal<<<dimGrid , dimBlock>>>(N s , N E , N F , A, B) ;
7 }

All the calling functions are similar and differ only by the block and grid
dimensions. We omit them in the rest of this chapter.

Adding two vectors (add)

The Runge-Kutta time integration scheme requires the addition of two vec-
tors. Similarly to equal, we divided this operation in NE thread blocks and
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Ns ×NF threads per block. Pgpublas uses the equivalent cublas function,
cublasSaxpy().

1 g l o b a l void gpu add ( i n t N s , i n t N E , i n t N F , s c a l a r * A,
s c a l a r * B, s c a l a r c ) {

2

3 // A = A + c*B
4 i n t e = blockIdx . x ;
5 i n t i = threadIdx . x ;
6 i n t f c = threadIdx . y ;
7

8 A[ ( e*N F+f c ) *N s+i ] = A[ ( e*N F+f c ) *N s+i ] + c*B[ ( e*N F+f c ) *
N s+i ] ;

9 }

Mapping from the element to the face (mapToFace)

Mapping the element unknowns to the interface is done with MT thread
blocks and Ms ×NF threads per block.

1 g l o b a l void gpu mapToFace ( i n t M s , i n t M T, i n t N F , i n t *
map, s c a l a r * U, s c a l a r * UF) {

2

3 i n t t = blockIdx . x ;
4 i n t j = threadIdx . x ;
5 i n t f c= threadIdx . y ;
6

7 i n t idx = −1;
8 i n t f a c e ;
9

10 f o r ( i n t d = 0 ; d < 2 ; d++){
11 f a c e= ( ( t *N F+f c )*2+d) *M s+j ;
12 idx = map [ f a c e ] ;
13 i f ( idx != −1){
14 UF[ f a c e ] = U[ idx ] ;
15 }
16 e l s e i f ( idx == −1){
17 i f ( f c == 0) UF[ ( ( t *N F+f c ) *2+1)*M s+j ] = UF[ ( ( t *N F+

f c ) *2+0)*M s+j ] ; // eta
18 e l s e i f ( f c == 1) UF[ ( ( t *N F+f c ) *2+1)*M s+j ] =−UF[ ( ( t *N F+

f c ) *2+0)*M s+j ] ; // ux
19 e l s e i f ( f c == 2) UF[ ( ( t *N F+f c ) *2+1)*M s+j ] =−UF[ ( ( t *N F+

f c ) *2+0)*M s+j ] ; // uy
20 }
21 }
22 }

Mapping from the face to the element (mapToElem)

Mapping the face contributions to the element contributions is done with
NE thread blocks and Ns ×NF threads per block.



73

1 g l o b a l void gpu mapToElement ( i n t N s , i n t N E , i n t N F , i n t *
invmap , s c a l a r * Q, s c a l a r * Qtcj ) {

2

3 i n t e = blockIdx . x ;
4 i n t i = threadIdx . x ;
5 i n t f c= threadIdx . y ;
6 i n t idx = 0 ;
7

8 s c a l a r s o l = 0 ;
9

10 f o r ( i n t k = 0 ; k < 2 ; k++){
11 idx = invmap [ ( ( e*N F+f c )*2+k ) *N s+i ] ;
12 i f ( idx != −1){
13 s o l += Qtcj [ idx ] ;
14 }
15 }
16 Q[ ( e*N F+f c ) *N s+i ] = s o l ;
17 }

Collocation step for the elements (collocationU)

The collocation step for the element unknowns is done with NE thread
blocks and NG ×NF threads per block. Pgpublas uses the cublas function
cublasSgemm().

1 g l o b a l void gpu co l l o ca t i onU ( i n t D, i n t N G, i n t N s , i n t
N E , i n t N F , s c a l a r * Ug , s c a l a r * dUg , s c a l a r * phi , s c a l a r *
dphi , s c a l a r * U) {

2

3 i n t e = blockIdx . x ;
4 i n t g = threadIdx . x ;
5 i n t f c= threadIdx . y ;
6

7 s c a l a r s o l = 0 ;
8

9 f o r ( i n t i = 0 ; i < N s ; i++){
10 s o l += phi [ i *N G+g ] * U[ ( e*N F+f c ) *N s+i ] ;
11 }
12 Ug [ ( e*N F+f c ) *N G+g ] = s o l ;
13

14 s o l = 0 . 0 ;
15 f o r ( i n t a = 0 ; a < D; a++){
16 f o r ( i n t i = 0 ; i < N s ; i++){
17 s o l += dphi [ ( i *N G+g ) *D+a ] * U[ ( e*N F+f c ) *N s+i ] ;
18 }
19 dUg [ ( ( e*N F+f c ) *N G+g ) *D+a ] = s o l ;
20 s o l = 0 . 0 ;
21 }
22 }
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Collocation step for the faces (collocationUF)

The collocation step for the face unknowns is done with MT thread blocks
andMG×NF threads per block. Pgpublas uses the cublas function cublasSgemm().

1 g l o b a l void gpu co l locat ionUF ( i n t M G, i n t M s , i n t M T, i n t
N F , s c a l a r * UgF, s c a l a r * ps i , s c a l a r * UF) {

2

3 i n t t = blockIdx . x ;
4 i n t g = threadIdx . x ;
5 i n t f c= threadIdx . y ;
6

7 s c a l a r s o l = 0 ;
8 f o r ( i n t d = 0 ; d < 2 ; d++){
9 f o r ( i n t j = 0 ; j < M s ; j++){

10 s o l += p s i [ j *M G+g ] * UF[ ( ( t *N F+f c )*2+d) *M s+j ] ;
11 }
12 UgF [ ( ( t *N F+f c )*2+d) *M G+g ] = s o l ;
13 s o l = 0 . 0 ;
14 }
15 }

Evaluating s and f (evaluate sf)

Evaluating the source and flux terms is done with NE thread blocks and NG

threads per block.

1 g l o b a l void g p u e v a l u a t e s f ( i n t D, i n t N G, i n t N E , i n t N F
, s c a l a r * s , s c a l a r * f , s c a l a r * Ug , s c a l a r H0 , s c a l a r G0) {

2

3 i n t e = blockIdx . x ;
4 i n t g = threadIdx . x ;
5

6 s c a l a r eta = Ug [ ( e*N F+0)*N G+g ] ;
7

8 s [ ( e*N F+0)*N G+g ] = 0 ;
9 s [ ( e*N F+1)*N G+g ] = 0 ;

10 s [ ( e*N F+2)*N G+g ] = 0 ;
11

12 // Flux de r i v e par rapport a x
13 f [ ( ( e*N F+0)*N G+g ) *D+0] = H0*Ug [ ( e*N F+1)*N G+g ] ; // u x
14 f [ ( ( e*N F+1)*N G+g ) *D+0] = G0* eta ; // eta
15 f [ ( ( e*N F+2)*N G+g ) *D+0] = 0 ;
16

17 // Flux de r i v e par rapport a y
18 f [ ( ( e*N F+0)*N G+g ) *D+1] = H0*Ug [ ( e*N F+2)*N G+g ] ; // u y
19 f [ ( ( e*N F+1)*N G+g ) *D+1] = 0 ;
20 f [ ( ( e*N F+2)*N G+g ) *D+1] = G0* eta ; // eta
21 }
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Evaluating q (evaluate q)

Evaluating the normal fluxes is done with MT thread blocks and MG threads
per block.

1 g l o b a l void gpu eva luate q ( i n t M G, i n t M T, i n t N F , s c a l a r
* q , s c a l a r * UgF, s c a l a r H0 , s c a l a r G0, s c a l a r * normals ) {

2

3 i n t t = blockIdx . x ;
4 i n t g = threadIdx . x ;
5

6 s c a l a r nx = normals [ t *2+0] ;
7 s c a l a r ny = normals [ t *2+1] ;
8 s c a l a r etaL= UgF [ ( ( t *N F+0)*2+0)*M G+g ] ;
9 s c a l a r etaR= UgF [ ( ( t *N F+0)*2+1)*M G+g ] ;

10 s c a l a r uLn = UgF [ ( ( t *N F+1)*2+0)*M G+g ] * nx + UgF [ ( ( t *N F+2)
*2+0)*M G+g ] * ny ;

11 s c a l a r uRn = UgF [ ( ( t *N F+1)*2+1)*M G+g ] * nx + UgF [ ( ( t *N F+2)
*2+1)*M G+g ] * ny ;

12

13 s c a l a r h0 = H0 ;
14 s c a l a r g0 = G0 ;
15

16 // f i r s t equat ion
17 s c a l a r qL = −0.5*h0 *(uLn + uRn + s q r t ( g0/h0 ) *( etaL−etaR ) ) ; //

Le f t
18 q [ ( ( t *N F+0)*2+0)*M G+g ] = qL ;
19 q [ ( ( t *N F+0)*2+1)*M G+g ] = −qL ;
20 // second
21 qL = −0.5*g0*nx*( etaL+etaR+s q r t ( h0/g0 ) *(uLn−uRn) ) ; // Le f t
22 q [ ( ( t *N F+1)*2+0)*M G+g ] = qL ;
23 q [ ( ( t *N F+1)*2+1)*M G+g ] = −qL ;
24 // th i rd
25 qL = −0.5*g0*ny*( etaL+etaR+s q r t ( h0/g0 ) *(uLn−uRn) ) ; // Le f t
26 q [ ( ( t *N F+2)*2+0)*M G+g ] = qL ;
27 q [ ( ( t *N F+2)*2+1)*M G+g ] = −qL ;
28 }

Multiplying s and f by the Jacobians (jacobian sf)

Multiplying the source and flux contributions is done with NE thread blocks
and NG ×NF threads per block.

1 g l o b a l void g p u j a c o b i a n s f ( i n t D, i n t N G, i n t N E , i n t N F
, s c a l a r * sJ , s c a l a r * fJ , s c a l a r * s , s c a l a r * f , s c a l a r * J ,
s c a l a r * invJac ) {

2

3 i n t e = blockIdx . x ;
4 i n t g = threadIdx . x ;
5 i n t f c= threadIdx . y ;
6

7 s c a l a r j = J [ e*N G+g ] ;
8 s c a l a r s o l = 0 . 0 ;
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9

10 sJ [ ( e*N F+f c ) *N G+g ] = s [ ( e*N F+f c ) *N G+g ] * j ;
11 f o r ( i n t alpha = 0 ; alpha < D; alpha++){
12 f o r ( i n t a = 0 ; a < D; a++){
13 s o l += invJac [ ( ( e*N G+g ) *D+alpha ) *D+a ]* f [ ( ( e*N F+f c ) *N G+g

) *D+a ] * j ;
14 }
15 f J [ ( ( e*N F+f c ) *N G+g ) *D+alpha ] = s o l ;
16 s o l = 0 ;
17 }
18 }

Matrix-matrix product to calculate S and F (gemm sf)

The matrix-matrix multiplication to evaluate the source and flux contribu-
tions is done with NE thread blocks and Ns×NF threads per block. Pgpublas

uses the cublas function cublasSgemm().

1 g l o b a l void gpu gemm sf ( i n t D, i n t N G, i n t N s , i n t N E ,
i n t N F , s c a l a r * S , s c a l a r * F, s c a l a r * sJ , s c a l a r * fJ , s c a l a r
* phi w , s c a l a r * dphi w ) {

2

3 i n t e = blockIdx . x ;
4 i n t i = threadIdx . x ;
5 i n t f c= threadIdx . y ;
6

7 s c a l a r s o l = 0 . 0 ;
8

9 // S = phi w . t ranspose ( ) x sJ
10 f o r ( i n t g = 0 ; g < N G; g++){
11 s o l += phi w [ i *N G+g ] * sJ [ ( e*N F+f c ) *N G+g ] ;
12 }
13 S [ ( e*N F+f c ) *N s+i ] = s o l ;
14 s o l = 0 . 0 ;
15

16 // F = dphi w . t ranspose ( ) x fJ
17 s o l = 0 . 0 ;
18 f o r ( i n t g = 0 ; g < N G; g++){
19 f o r ( i n t a = 0 ; a < D; a++){
20 s o l += dphi w [ ( i *N G+g ) *D+a ] * f J [ ( ( e*N F+f c ) *N G+g ) *D+a ] ;
21 }
22 }
23 F [ ( e*N F+f c ) *N s+i ] = s o l ;
24 s o l = 0 . 0 ;
25 }

Multiplying q by the face Jacobians (jacobian q)

Multiplying the face terms by the face Jacobians is done with MT thread
blocks and MG ×NF threads per block.
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1 g l o b a l void gpu jacob ian q ( i n t M G, i n t M T, i n t N F , s c a l a r
* qJ , s c a l a r * q , s c a l a r * JF) {

2

3 i n t t = blockIdx . x ;
4 i n t g = threadIdx . x ;
5 i n t f c= threadIdx . y ;
6

7 f o r ( i n t d = 0 ; d < 2 ; d++){
8 qJ [ ( ( t *N F+f c )*2+d) *M G+g ] = q [ ( ( t *N F+f c )*2+d) *M G+g ] * JF

[ ( ( t *M G+g )*2+d) ] ;
9 }

10 }

Matrix-matrix product to calculate Qtcj (gemm q)

The matrix-matrix multiplication to evaluate the face contributions is done
with MT thread blocks and Ms ×NF threads per block. Pgpublas uses the
cublas function cublasSgemm().

1 g l o b a l void gpu gemm q ( i n t M G, i n t M s , i n t M T, i n t N F ,
s c a l a r * Qtcj , s c a l a r * qJ , s c a l a r * ps i w ) {

2

3 i n t t = blockIdx . x ;
4 i n t j = threadIdx . x ;
5 i n t f c= threadIdx . y ;
6

7 s c a l a r s o l = 0 . 0 ;
8

9 // Qtcj = ps i w . t ranspose ( ) x qJ
10 f o r ( i n t d = 0 ; d < 2 ; d++){
11 f o r ( i n t g = 0 ; g < M G; g++){
12 s o l += psi w [ j *M G+g ] * qJ [ ( ( t *N F+f c )*2+d) *M G+g ] ;
13 }
14 Qtcj [ ( ( t *N F+f c )*2+d) *M s+j ] = s o l ;
15 s o l = 0 . 0 ;
16 }
17 }

Solving the linear system (solve)

Solving the linear system is done with NE thread blocks and Ns×NF threads
per block. It is not possible to call a cublas function from within a kernel.
Therefore the matrix vector product in this step does not take advantage of
a cublas implementation.

1 g l o b a l void gpu so lve ( i n t N s , i n t N E , i n t N F , s c a l a r * DU,
s c a l a r * S , s c a l a r * F, s c a l a r * Q, s c a l a r * Minv , s c a l a r Dt) {

2

3 i n t e = blockIdx . x ;
4 i n t i = threadIdx . x ;
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5 i n t f c= threadIdx . y ;
6

7 s c a l a r s o l = 0 . 0 ;
8

9 f o r ( i n t i i = 0 ; i i < N s ; i i ++){
10 s o l += Minv [ ( e*N s+i i ) *N s+i ] * ( S [ ( e*N F+f c ) *N s+i i ] + F [ ( e*

N F+f c ) *N s+i i ] + Q[ ( e*N F+f c ) *N s+i i ] ) ;
11 }
12 DU[ ( e*N F+f c ) *N s+i ] = Dt* s o l ;
13 s o l = 0 . 0 ;
14 }



Appendix C

Additional Figures and
Tables

C.1 Launch Time Tables

Kernel
NE = 4 NE = 1108 NE = 18822

ms Ko[%] ms Ko[%] ms Ko[%]

equal 0.0045 25.19 0.0042 15.75 0.0053 3.27
mapToFace 0.0037 18.14 0.0039 8.99 0.0046 1.12
mapToElem 0.0039 20.18 0.0040 8.48 0.0044 0.90
collocationU 0.0049 11.79 0.0049 0.50 0.0051 0.03
collocationUF 0.0039 16.90 0.0046 2.81 0.0046 0.20
evaluate_sf 0.0046 25.46 0.0047 9.93 0.0052 1.01
evaluate_q 0.0043 21.30 0.0044 10.43 0.0047 1.18
jacobian_sf 0.0054 24.36 0.0049 3.33 0.0050 0.23
gemm_sf 0.0057 9.85 0.0052 0.19 0.0057 0.01
jacobian_q 0.0038 20.55 0.0042 12.25 0.0045 1.56
gemm_q 0.0040 17.39 0.0039 1.53 0.0043 0.11
solve 0.0047 17.30 0.0047 2.23 0.0050 0.14

Kernel
p = 1 p = 5 p = 10

ms Ko[%] ms Ko[%] ms Ko[%]

equal 0.0044 17.57 0.0041 13.61 0.0045 8.32
mapToFace 0.0035 9.16 0.0038 7.97 0.0042 6.49
mapToElem 0.0044 13.90 0.0043 8.48 0.0044 4.82
collocationU 0.0047 7.64 0.0052 0.33 0.0051 0.05
collocationUF 0.0043 7.30 0.0048 1.78 0.0048 0.74
evaluate_sf 0.0049 15.94 0.0051 9.09 0.0051 3.11
evaluate_q 0.0048 11.18 0.0045 10.43 0.0046 10.39
jacobian_sf 0.0047 10.90 0.0048 2.44 0.0051 0.69
gemm_sf 0.0055 3.70 0.0054 0.12 0.0068 0.01
jacobian_q 0.0042 13.29 0.0043 11.23 0.0048 8.50
gemm_q 0.0040 7.41 0.0044 0.97 0.0042 0.22
solve 0.0045 12.79 0.0047 1.33 0.0049 0.17

Table C.1: Launch times and ratio of kernel overhead time to total kernel
execution time, Ko, for fixed p and increasing NE and for fixed NE and
increasing p for Pgpu.
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C.2 Relative Standard Deviation Tables

Kernel
RSD(%) for p = 4

NE = 4 NE = 1108 NE = 18822

equal 11.41 24.17 4.46
mappingToFace 9.67 17.48 1.44
mappingToElem 24.81 15.60 1.32
collocationU 4.92 3.45 2.13
collocationUF 9.86 3.97 0.28
evaluate_sf 9.11 12.79 1.29
evaluate_q 13.99 17.74 1.53
jacobian_sf 11.21 4.38 0.31
gemm_sf 20.30 0.41 1.21
jacobian_q 42.43 17.26 2.27
gemm_q 26.28 2.30 0.16
solve 11.92 3.20 0.33
rk_step 1.94 0.36 0.43

Kernel
RSD(%) for NE = 1108

p = 1 p = 5 p = 10

equal 28.92 24.17 9.87
mapToFace 15.94 17.48 10.61
mapToElem 21.91 15.60 4.12
collocationU 10.91 3.45 0.14
collocationUF 10.46 3.97 1.79
evaluate_sf 24.03 12.79 4.55
evaluate_q 15.76 17.74 14.80
jacobian_sf 17.77 4.38 1.23
gemm_sf 3.77 0.41 0.18
jacobian_q 21.53 17.26 12.07
gemm_q 16.71 2.30 0.29
solve 26.61 3.20 0.45
rk_step 1.11 0.36 0.07

Table C.2: Exectution time relative standard deviation, RSD = σ
µ for fixed

p = 4 and increasing NE and for fixed NE = 1108 and increasing p for Pgpu.
The relative standard deviations are small. Therefore the average execution
times reported in this paper are accurate.
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Figure C.1: Comparing the percentage of time spent in each kernel for
the different implementations as a funtion of the number of elements. The
element order is fixed: p = 4. Solid color rectangles are operations that use
the blas or cublas libraries.
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C.3.1 equal

(a) Average kernel execution time.

(b) Speedup.

(c) Bandwidth comparison. Theoretical and practical bandwidth.

Figure C.2: equal kernel performance as a function of NE (left column,
p = 4) and as a function of p (right column, NE = 1108) for Pcpu, Pgpu,
Pgpublas.
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C.3.2 Mappings

(a) Average kernel execution time.

(b) Speedup.

Figure C.3: mappingToFace kernel performance as a function of NE (left
column, p = 4) and as a function of p (right column, NE = 1108) for Pcpu,
Pgpu, Pgpublas.

(a) Average kernel execution time.

(b) Speedup.

Figure C.4: mappingToElem kernel performance as a function of NE (left
column, p = 4) and as a function of p (right column, NE = 1108) for Pcpu,
Pgpu, Pgpublas.
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C.3.3 Evaluating the Physics

(a) Average kernel execution time.

(b) Speedup.

(c) Bandwidth comparison. Theoretical and practical band-
width.

(d) Floating point operations.

Figure C.5: evaluate sf kernel performance as a function of NE (left col-
umn, p = 4) and as a function of p (right column, NE = 1108) for Pcpu,
Pgpu, Pgpublas.
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(a) Average kernel execution time.

(b) Speedup.

(c) Bandwidth comparison. Theoretical and practical band-
width.

(d) Floating point operations.

Figure C.6: evaluate q kernel performance as a function ofNE (left column,
p = 4) and as a function of p (right column, NE = 1108) for Pcpu, Pgpu,
Pgpublas.
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C.3.4 Multiplying by the Jacobians

(a) Average kernel execution time.

(b) Speedup.

(c) Bandwidth comparison. Theoretical and practical band-
width.

(d) Floating point operations.

Figure C.7: jacobian sf kernel performance as a function of NE (left col-
umn, p = 4) and as a function of p (right column, NE = 1108) for Pcpu,
Pgpu, Pgpublas.
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(a) Average kernel execution time.

(b) Speedup.

(c) Bandwidth comparison. Theoretical and practical band-
width.

(d) Floating point operations.

Figure C.8: jacobian q kernel performance as a function ofNE (left column,
p = 4) and as a function of p (right column, NE = 1108) for Pcpu, Pgpu,
Pgpublas.
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C.3.5 Matrix-matrix Products

(a) Average kernel execution time.

(b) Speedup.

(c) Floating point operations.

Figure C.9: collocationU kernel performance as a function of NE (left
column, p = 4) and as a function of p (right column, NE = 1108) for Pcpu,
Pgpu, Pgpublas.
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(a) Average kernel execution time.

(b) Speedup.

(c) Floating point operations.

Figure C.10: collocationUF kernel performance as a function of NE (left
column, p = 4) and as a function of p (right column, NE = 1108) for Pcpu,
Pgpu, Pgpublas.
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(a) Average kernel execution time.

(b) Speedup.

(c) Floating point operations.

Figure C.11: gemm sf kernel performance as a function of NE (left column,
p = 4) and as a function of p (right column, NE = 1108) for Pcpu, Pgpu,
Pgpublas.
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(a) Average kernel execution time.

(b) Speedup.

(c) Floating point operations.

Figure C.12: gemm q kernel performance as a function of NE (left column,
p = 4) and as a function of p (right column, NE = 1108) for Pcpu, Pgpu,
Pgpublas.
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C.3.6 Solving the Linear System

(a) Average kernel execution time.

(b) Speedup.

(c) Floating point operations.

Figure C.13: solve kernel performance as a function of NE (left column,
p = 4) and as a function of p (right column, NE = 1108) for Pcpu, Pgpu,
Pgpublas.
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Computer characteristics

D.1 CPU Characteristics

The computer used for the cpu calculations, gameboy, has eight processors,
each an Intel(R) Xeon(R) CPU X5550. These processors have

- a 2.67 GHz clock rate;

- four cpu cores;

- eight threads;

- and a 8 MB cache.

D.2 GPU Characteristics

The gpus provided by the Institute of Mechanics, Materials and Civil En-
gineering are four Tesla C1060. Their characteristics are1 presented in Ta-
ble D.1.

1Output from the deviceQuery.cu provided with nvidia’s sdk.



94 D.2 GPU Characteristics

Device 0: “Tesla C1060”
CUDA Driver Version: 3.0
CUDA Runtime Version: 3.0
CUDA Capability Major revision number: 1
CUDA Capability Minor revision number: 3
Total amount of global memory: 4294770688 bytes
Number of multiprocessors: 30
Number of cores: 240
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 16384 bytes
Total number of registers available per block: 16384
Warp size: 32
Maximum number of threads per block: 512
Maximum sizes of each dimension of a block: 512 x 512 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 1
Maximum memory pitch: 2147483647 bytes
Texture alignment: 256 bytes
Clock rate: 1.30 GHz
Concurrent copy and execution: Yes
Run time limit on kernels: No
Integrated: No
Support host page-locked memory mapping: Yes
Compute mode: Default (multiple host threads can

use this device simultaneously)

Table D.1: GPU caracteristics.
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The output from the bandwidth test (bandwidthTest.cu kernel in the
sdk) is

./bandwidthTest Starting...

Running on...

Device 0: Tesla C1060

Quick Mode

Host to Device Bandwidth, 1 Device(s), Paged memory

Transfer Size (Bytes) Bandwidth(MB/s)

33554432 4795.8

Device to Host Bandwidth, 1 Device(s), Paged memory

Transfer Size (Bytes) Bandwidth(MB/s)

33554432 2995.3

Device to Device Bandwidth, 1 Device(s)

Transfer Size (Bytes) Bandwidth(MB/s)

33554432 73392.1

[bandwidthTest] - Test results:

PASSED

Press <Enter> to Quit...

-----------------------------------------------------------





Appendix E

Notations

Notation Significations index units

Ns number of nodes on an element i -
Ms number of nodes on a face j -
NT number of faces per element -
NE number of elements e -
MT number of interfaces t -
NG number of integration points per element g -
MG number of integration points per face g -
D number of coordinates in element reference space α -
DF number of coordinates in face reference space α -
NF number of unknown fields fc -
O occupancy - %
F floating point operations - flops
Ko ratio of kernel overhead to kernel execution time - %
Btheo theoretical bandwidth - GB/s

Bpract practical bandwidth - GB/s

Pcpu program running on the cpu - -
Pgpu program running on the gpu - -
Pgpublas program running on the gpu with the cublas library - -

Table E.1: Symbols and their significance.
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